sidebar
"Gravitational Radiation from Post-Newtonian Sources
and Inspiralling Compact Binaries"
Luc Blanchet 
Abstract
1 Introduction
1.1 Analytic approximations and wave generation formalism
1.2 The quadrupole moment formalism
1.3 Problem posed by compact binary systems
1.4 Post-Newtonian equations of motion
1.5 Post-Newtonian gravitational radiation
A Post-Newtonian Sources
2 Non-linear Iteration of the Vacuum Field Equations
2.1 Einstein’s field equations
2.2 Linearized vacuum equations
2.3 The multipolar post-Minkowskian solution
2.4 Generality of the MPM solution
2.5 Near-zone and far-zone structures
3 Asymptotic Gravitational Waveform
3.1 The radiative multipole moments
3.2 Gravitational-wave tails and tails-of-tails
3.3 Radiative versus source moments
4 Matching to a Post-Newtonian Source
4.1 The matching equation
4.2 General expression of the multipole expansion
4.3 Equivalence with the Will–Wiseman formalism
4.4 The source multipole moments
5 Interior Field of a Post-Newtonian Source
5.1 Post-Newtonian iteration in the near zone
5.2 Post-Newtonian metric and radiation reaction effects
5.3 The 3.5PN metric for general matter systems
5.4 Radiation reaction potentials to 4PN order
B Compact Binary Systems
6 Regularization of the Field of Point Particles
6.1 Hadamard self-field regularization
6.2 Hadamard regularization ambiguities
6.3 Dimensional regularization of the equations of motion
6.4 Dimensional regularization of the radiation field
7 Newtonian-like Equations of Motion
7.1 The 3PN acceleration and energy for particles
7.2 Lagrangian and Hamiltonian formulations
7.3 Equations of motion in the center-of-mass frame
7.4 Equations of motion and energy for quasi-circular orbits
7.5 The 2.5PN metric in the near zone
8 Conservative Dynamics of Compact Binaries
8.1 Concept of innermost circular orbit
8.2 Dynamical stability of circular orbits
8.3 The first law of binary point-particle mechanics
8.4 Post-Newtonian approximation versus gravitational self-force
9 Gravitational Waves from Compact Binaries
9.1 The binary’s multipole moments
9.2 Gravitational wave energy flux
9.3 Orbital phase evolution
9.4 Polarization waveforms for data analysis
9.5 Spherical harmonic modes for numerical relativity
10 Eccentric Compact Binaries
10.1 Doubly periodic structure of the motion of eccentric binaries
10.2 Quasi-Keplerian representation of the motion
10.3 Averaged energy and angular momentum fluxes
11 Spinning Compact Binaries
11.1 Lagrangian formalism for spinning point particles
11.2 Equations of motion and precession for spin-orbit effects
11.3 Spin-orbit effects in the gravitational wave flux and orbital phase
Acknowledgments
References
Footnotes
Updates
Figures
Tables

References

1 Abbott, B. P. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of Gravitational Waves from a Binary Black Hole Merger”, Phys. Rev. Lett., 116, 061102 (2016). [External LinkDOI], [External LinkADS], [External LinkarXiv:1602.03837 [gr-qc]].
2 Abramowicz, M. A. and Kluźniak, W., “A precise determination of black hole spin in GRO J1655-40”, Astron. Astrophys., 374, L19–L20 (2001). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0105077].
3 Ajith, P., Iyer, B. R., Robinson, C. A. K. and Sathyaprakash, B. S., “New class of post-Newtonian approximants to the waveform templates of inspiralling compact binaries: Test mass in the Schwarzschild spacetime”, Phys. Rev. D, 71, 044029 (2005). [External Linkgr-qc/0412033].
4 Ajith, P. et al., “Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries”, Phys. Rev. D, 77, 104017 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0710.2335 [gr-qc]]. Erratum: Phys. Rev. D, 79, 129901(E) (2009).
5 Alvi, K., “Energy and angular momentum flow into a black hole in a binary”, Phys. Rev. D, 64, 104020 (2001). [External LinkDOI], [External LinkarXiv:0107080 [gr-qc]].
6 Anderson, J. L. and DeCanio, T. C., “Equations of hydrodynamics in general relativity in the slow motion approximation”, Gen. Relativ. Gravit., 6, 197–237 (1975). [External LinkDOI].
7 Anderson, J. L., Kates, R. E., Kegeles, L. S. and Madonna, R. G., “Divergent integrals of post-Newtonian gravity: Nonanalytic terms in the near-zone expansion of a gravitationally radiating system found by matching”, Phys. Rev. D, 25, 2038–2048 (1982). [External LinkDOI], [External LinkADS].
8 Apostolatos, T. A., Cutler, C., Sussman, G. J. and Thorne, K. S., “Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries”, Phys. Rev. D, 49, 6274–6297 (1994). [External LinkDOI].
9 Arun, K. G., Blanchet, L., Iyer, B. R. and Qusailah, M. S., “Inspiralling compact binaries in quasi-elliptical orbits: The complete 3PN energy flux”, Phys. Rev. D, 77, 064035 (2008). [External LinkDOI], [External LinkarXiv:0711.0302].
10 Arun, K. G., Blanchet, L., Iyer, B. R. and Qusailah, M. S., “Tail effects in the 3PN gravitational wave energy flux of compact binaries in quasi-elliptical orbits”, Phys. Rev. D, 77, 064034 (2008). [External LinkDOI], [External LinkarXiv:0711.0250].
11 Arun, K. G., Blanchet, L., Iyer, B. R. and Qusailah, M. S. S., “The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits”, Class. Quantum Grav., 21, 3771–3801 (2004). [External LinkDOI], [External Linkgr-qc/0404185]. Erratum: Class. Quantum Grav., 22, 3115 (2005).
12 Arun, K. G., Blanchet, L., Iyer, B. R. and Sinha, S., “Third post-Newtonian angular momentum flux and the secular evolution of orbital elements for inspiralling compact binaries in quasi-elliptical orbits”, Phys. Rev. D, 80, 124018 (2009). [External LinkDOI], [External LinkarXiv:0908.3854].
13 Arun, K. G., Buonanno, A., Faye, G. and Ochsner, E., “Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms”, Phys. Rev. D, 79, 104023 (2009). [External LinkDOI], [External LinkarXiv:0810.5336].
14 Arun, K. G., Iyer, B. R., Qusailah, M. S. S. and Sathyaprakash, B. S., “Probing the non-linear structure of general relativity with black hole binaries”, Phys. Rev. D, 74, 024006 (2006). [External LinkDOI], [External Linkgr-qc/0604067].
15 Arun, K. G., Iyer, B. R., Qusailah, M. S. S. and Sathyaprakash, B. S., “Testing post-Newtonian theory with gravitational wave observations”, Class. Quantum Grav., 23, L37–L43 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0604018].
16 Arun, K. G., Iyer, B. R., Sathyaprakash, B. S. and Sinha, S., “Higher harmonics increase LISA’s mass reach for supermassive black holes”, Phys. Rev. D, 75, 124002 (2007). [External LinkDOI], [External LinkarXiv:0704.1086].
17 Arun, K. G., Iyer, B. R., Sathyaprakash, B. S., Sinha, S. and Van Den Broeck, C., “Higher signal harmonics, LISA’s angular resolution, and dark energy”, Phys. Rev. D, 76, 104016 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.3920].
18 Arun, K. G., Iyer, B. R., Sathyaprakash, B. S. and Sundararajan, P. A., “Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case”, Phys. Rev. D, 71, 084008 (2005). [External LinkDOI], [External Linkgr-qc/0411146].
19 Bailey, I. and Israel, W., “Lagrangian dynamics of spinning particles and polarized media in general relativity”, Commun. Math. Phys., 42, 65 (1975). [External LinkDOI].
20 Baker, J. G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J. and Miller, M. C., “Getting a kick out of numerical relativity”, Astrophys. J., 653, L93–L96 (2006). [External LinkDOI], [External Linkastro-ph/0603204].
21 Baker, J. G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J. R., “Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96, 111102 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0511103].
22 Barack, L., “Gravitational self-force in extreme mass-ratio inspirals”, Class. Quantum Grav., 26, 213001 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0908.1664 [gr-qc]].
23 Barack, L., “Computational Methods for the Self-Force in Black Hole Spacetimes”, in Blanchet, L., Spallicci, A. and Whiting, B., eds., Mass and Motion in General Relativity, Lectures from the CNRS School on Mass held in Orléans, France, 23 – 25 June 2008, Fundamental Theories of Physics, 162, pp. 327–366, (Springer, Dordrecht; New York, 2011). [External LinkDOI], [External LinkADS].
24 Barack, L. and Sago, N., “Gravitational self-force correction to the innermost stable circular orbit of a Schwarzschild black hole”, Phys. Rev. Lett., 102, 191101 (2009). [External LinkDOI], [External LinkarXiv:0902.0573].
25 Barausse, E., Racine, E. and Buonanno, A., “Hamiltonian of a spinning test particle in curved spacetime”, Phys. Rev. D, 80, 104025 (2009). [External LinkDOI], [External LinkarXiv:0907.4745 [gr-qc]].
26 Bardeen, J. M., Carter, B. and Hawking, S. W., “The Four Laws of Black Hole Mechanics”, Commun. Math. Phys., 31, 161–170 (1973). [External LinkDOI], [External LinkADS].
27 Barker, B. M. and O’Connell, R. F., “Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments”, Phys. Rev. D, 12, 329–335 (1975). [External LinkDOI].
28 Barker, B. M. and O’Connell, R. F., “The Gravitational Interaction: Spin, Rotation, and Quantum Effects – A Review”, Gen. Relativ. Gravit., 11, 149–175 (1979). [External LinkDOI].
29 Baumgarte, T. W., “Innermost stable circular orbit of binary black holes”, Phys. Rev. D, 62, 024018 (2000). [External LinkDOI], [External LinkADS].
30 Bekenstein, J. D., “Gravitational Radiation Recoil and Runaway Black Holes”, Astrophys. J., 183, 657–664 (1973). [External LinkDOI], [External LinkADS].
31 Bel, L., Damour, T., Deruelle, N., Ibáñez, J. and Martin, J., “Poincaré-Invariant Gravitational Field and Equations of Motion of two Pointlike Objects: The Postlinear Approximation of General Relativity”, Gen. Relativ. Gravit., 13, 963–1004 (1981). [External LinkDOI].
32 Benacquista, M. J. and Downing, J. M. B., “Relativistic Binaries in Globular Clusters”, Living Rev. Relativity, 16, lrr-2013-4 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.4423]. URL (accessed 6 October 2013):
http://www.livingreviews.org/lrr-2013-4.
33 Bernard, L., Blanchet, L., Bohé, A., Faye, G. and Marsat, S., “Fokker action of non-spinning compact binaries at the fourth post-Newtonian approximation”, arXiv, e-print, (2015). [External LinkarXiv:1512.02876 [gr-qc]].
34 Berti, E., Cardoso, V., Gonzalez, J. A., Sperhake, U., Hannam, M., Husa, S. and Brügmann, B., “Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis”, Phys. Rev. D, 76, 064034 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0703053].
35 Bertotti, B. and Plebański, J. F., “Theory of gravitational perturbations in the fast motion approximation”, Ann. Phys. (N.Y.), 11, 169–200 (1960). [External LinkDOI].
36 Bini, D. and Damour, T., “Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation”, Phys. Rev. D, 87, 121501 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1305.4884 [gr-qc]].
37 Bini, D. and Damour, T., “Analytic determination of the eight-and-a-half post-Newtonian self-force contributions to the two-body gravitational interaction potential”, Phys. Rev. D, 89, 104047 (2014). [External LinkDOI], [External LinkarXiv:1403.2366 [gr-qc]].
38 Bini, D. and Damour, T., “High-order post-Newtonian contributions to the two-body gravitational interaction potential from analytical gravitational self-force calculations”, Phys. Rev. D, 89, 064063 (2014). [External LinkDOI], [External LinkarXiv:1312.2503 [gr-qc]].
39 Bini, D., Damour, T. and Geralico, A., “Confirming and improving post-Newtonian and effective-one-body results from self-force computations along eccentric orbits around a Schwarzschild black hole”, arXiv, e-print, (2015). [External LinkarXiv:1511.04533 [gr-qc]].
40 Blaes, O., Lee, M. H. and Socrates, A., “The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes”, Astrophys. J., 578, 775–786 (2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0203370].
41 Blanchet, L., “Radiative gravitational fields in general-relativity. II. Asymptotic-behaviour at future null infinity”, Proc. R. Soc. London, Ser. A, 409, 383–399 (1987). [External LinkDOI].
42 Blanchet, L., Contribution à l’étude du rayonnement gravitationnel émis par un système isolé, Habil. thesis, (Université Paris VI, Paris, 1990).
43 Blanchet, L., “Time asymmetric structure of gravitational radiation”, Phys. Rev. D, 47, 4392–4420 (1993). [External LinkDOI].
44 Blanchet, L., “Second-post-Newtonian generation of gravitational radiation”, Phys. Rev. D, 51, 2559–2583 (1995). [External LinkDOI], [External Linkgr-qc/9501030].
45 Blanchet, L., “Energy losses by gravitational radiation in inspiralling compact binaries to five halves post-Newtonian order”, Phys. Rev. D, 54, 1417–1438 (1996). [External LinkDOI], [External Linkgr-qc/9603048]. Erratum: Phys. Rev. D, 71, 129904(E) (2005).
46 Blanchet, L., “Gravitational radiation from relativistic sources”, in Marck, J.-A. and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, Cambridge Contemporary Astrophysics, pp. 33–66, (Cambridge University Press, Cambridge, 1997). [External Linkgr-qc/9609049], [External LinkGoogle Books].
47 Blanchet, L., “Gravitational radiation reaction and balance equations to post-Newtonian order”, Phys. Rev. D, 55, 714–732 (1997). [External LinkDOI], [External Linkgr-qc/9609049].
48 Blanchet, L., “Gravitational-wave tails of tails”, Class. Quantum Grav., 15, 113–141 (1998). [External LinkDOI], [External Linkgr-qc/9710038]. Erratum: Class. Quantum Grav., 22, 3381 (2005).
49 Blanchet, L., “On the multipole expansion of the gravitational field”, Class. Quantum Grav., 15, 1971–1999 (1998). [External LinkDOI], [External Linkgr-qc/9801101].
50 Blanchet, L., “Quadrupole-quadrupole gravitational waves”, Class. Quantum Grav., 15, 89–111 (1998). [External LinkDOI], [External Linkgr-qc/9710037].
51 Blanchet, L., “Innermost circular orbit of binary black holes at the third post-Newtonian approximation”, Phys. Rev. D, 65, 124009 (2002). [External LinkDOI], [External Linkgr-qc/0112056].
52 Blanchet, L., “Post-Newtonian theory and the two-body problem”, in Blanchet, L., Spallicci, A. and Whiting, B., eds., Mass and Motion in General Relativity, Lectures from the CNRS School on Mass held in Orléans, France, 23 – 25 June 2008, Fundamental Theories of Physics, pp. 125–166, (Springer, Dordrecht; New York, 2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.3596 [gr-qc]].
53 Blanchet, L., Buonanno, A. and Faye, G., “Higher-order spin effects in the dynamics of compact binaries II. Radiation field”, Phys. Rev. D, 74, 104034 (2006). [External LinkDOI], [External Linkgr-qc/0605140]. Erratum: Phys. Rev. D, 75, 049903 (2007).
54 Blanchet, L., Buonanno, A. and Faye, G., “Tail-induced spin-orbit effect in the gravitational radiation of compact binaries”, Phys. Rev. D, 84, 064041 (2011). [External LinkDOI], [External LinkarXiv:1104.5659 [gr-qc]].
55 Blanchet, L., Buonanno, A. and Le Tiec, A., “First law of mechanics for black hole binaries with spins”, Phys. Rev. D, 87, 024030 (2013). [External LinkDOI], [External LinkarXiv:1211.1060 [gr-qc]].
56 Blanchet, L. and Damour, T., “Multipolar radiation reaction in general relativity”, Phys. Lett. A, 104, 82–86 (1984). [External LinkDOI].
57 Blanchet, L. and Damour, T., “Radiative gravitational fields in general relativity I. General structure of the field outside the source”, Philos. Trans. R. Soc. London, Ser. A, 320, 379–430 (1986). [External LinkDOI].
58 Blanchet, L. and Damour, T., “Tail-transported temporal correlations in the dynamics of a gravitating system”, Phys. Rev. D, 37, 1410–1435 (1988). [External LinkDOI].
59 Blanchet, L. and Damour, T., “Post-Newtonian generation of gravitational waves”, Ann. Inst. Henri Poincare A, 50, 377–408 (1989).
60 Blanchet, L. and Damour, T., “Hereditary effects in gravitational radiation”, Phys. Rev. D, 46, 4304–4319 (1992). [External LinkDOI].
61 Blanchet, L., Damour, T. and Esposito-Farèse, G., “Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates”, Phys. Rev. D, 69, 124007 (2004). [External LinkDOI], [External Linkgr-qc/0311052].
62 Blanchet, L., Damour, T., Esposito-Farèse, G. and Iyer, B. R., “Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order”, Phys. Rev. Lett., 93, 091101 (2004). [External LinkDOI], [External Linkgr-qc/0406012].
63 Blanchet, L., Damour, T., Esposito-Farèse, G. and Iyer, B. R., “Dimensional regularization of the third post-Newtonian gravitational wave generation of two point masses”, Phys. Rev. D, 71, 124004 (2005). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0503044].
64 Blanchet, L., Damour, T. and Iyer, B. R., “Gravitational waves from inspiralling compact binaries: Energy loss and wave form to second post-Newtonian order”, Phys. Rev. D, 51, 5360–5386 (1995). [External LinkDOI], [External Linkgr-qc/9501029].
65 Blanchet, L., Damour, T. and Iyer, B. R., “Surface-integral expressions for the multipole moments of post-Newtonian sources and the boosted Schwarzschild solution”, Class. Quantum Grav., 22, 155 (2005). [External LinkDOI], [External Linkgr-qc/0410021].
66 Blanchet, L., Damour, T., Iyer, B. R., Will, C. M. and Wiseman, A. G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515–3518 (1995). [External LinkDOI], [External Linkgr-qc/9501027].
67 Blanchet, L., Detweiler, S., Le Tiec, A. and Whiting, B. F., “Higher-order Post-Newtonian fit of the gravitational self-force for circular orbits in the Schwarzschild geometry”, Phys. Rev. D, 81, 084033 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1002.0726 [gr-qc]].
68 Blanchet, L., Detweiler, S., Le Tiec, A. and Whiting, B. F., “Post-Newtonian and numerical calculations of the gravitational self-force for circular orbits in the Schwarzschild geometry”, Phys. Rev. D, 81, 064004 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0910.0207 [gr-qc]].
69 Blanchet, L. and Faye, G., “Equations of motion of point-particle binaries at the third post-Newtonian order”, Phys. Lett. A, 271, 58–64 (2000). [External LinkDOI], [External Linkgr-qc/0004009].
70 Blanchet, L. and Faye, G., “Hadamard regularization”, J. Math. Phys., 41, 7675–7714 (2000). [External LinkDOI], [External Linkgr-qc/0004008].
71 Blanchet, L. and Faye, G., “General relativistic dynamics of compact binaries at the third post-Newtonian order”, Phys. Rev. D, 63, 062005 (2001). [External LinkDOI], [External Linkgr-qc/0007051].
72 Blanchet, L. and Faye, G., “Lorentzian regularization and the problem of point-like particles in general relativity”, J. Math. Phys., 42, 4391–4418 (2001). [External LinkDOI], [External Linkgr-qc/0006100].
73 Blanchet, L., Faye, G., Iyer, B. R. and Joguet, B., “Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501(R) (2002). [External LinkDOI], [External Linkgr-qc/0105099]. Erratum: Phys. Rev. D, 71, 129902(E) (2005).
74 Blanchet, L., Faye, G., Iyer, B. R. and Sinha, S., “The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits”, Class. Quantum Grav., 25, 165003 (2008). [External LinkDOI], [External LinkarXiv:0802.1249].
75 Blanchet, L., Faye, G. and Nissanke, S., “Structure of the post-Newtonian expansion in general relativity”, Phys. Rev. D, 72, 044024 (2005). [External LinkDOI].
76 Blanchet, L., Faye, G. and Ponsot, B., “Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 58, 124002 (1998). [External LinkDOI], [External Linkgr-qc/9804079].
77 Blanchet, L., Faye, G. and Whiting, B. F., “Half-integral conservative post-Newtonian approximations in the redshift factor of black hole binaries”, Phys. Rev. D, 89, 064026 (2014). [External LinkDOI], [External LinkarXiv:1312.2975 [gr-qc]].
78 Blanchet, L., Faye, G. and Whiting, B. F., “High-order half-integral conservative post-Newtonian coefficients in the redshift factor of black hole binaries”, Phys. Rev. D, 90, 044017 (2014). [External LinkDOI], [External LinkarXiv:1405.5151 [gr-qc]].
79 Blanchet, L. and Iyer, B. R., “Third post-Newtonian dynamics of compact binaries: Equations of motion in the center-of-mass frame”, Class. Quantum Grav., 20, 755 (2003). [External LinkDOI], [External Linkgr-qc/0209089].
80 Blanchet, L. and Iyer, B. R., “Hadamard regularization of the third post-Newtonian gravitational wave generation of two point masses”, Phys. Rev. D, 71, 024004 (2005). [External LinkDOI], [External Linkgr-qc/0409094].
81 Blanchet, L., Iyer, B. R. and Joguet, B., “Gravitational waves from inspiralling compact binaries: Energy flux to third post-Newtonian order”, Phys. Rev. D, 65, 064005 (2002). [External Linkgr-qc/0105098]. Erratum: Phys. Rev. D, 71, 129903(E) (2005).
82 Blanchet, L., Iyer, B. R., Will, C. M. and Wiseman, A. G., “Gravitational wave forms from inspiralling compact binaries to second-post-Newtonian order”, Class. Quantum Grav., 13, 575–584 (1996). [External LinkDOI], [External Linkgr-qc/9602024].
83 Blanchet, L., Qusailah, M. S. and Will, C. M., “Gravitational recoil of inspiraling black-hole binaries to second post-Newtonian order”, Astrophys. J., 635, 508 (2005). [External LinkDOI], [External Linkastro-ph/0507692].
84 Blanchet, L. and Sathyaprakash, B. S., “Signal analysis of gravitational wave tails”, Class. Quantum Grav., 11, 2807–2831 (1994). [External LinkDOI].
85 Blanchet, L. and Sathyaprakash, B. S., “Detecting a Tail Effect in Gravitational-Wave Experiments”, Phys. Rev. Lett., 74, 1067–1070 (1995). [External LinkDOI], [External LinkADS].
86 Blanchet, L. and Schäfer, G., “Higher order gravitational radiation losses in binary systems”, Mon. Not. R. Astron. Soc., 239, 845–867 (1989). [External LinkDOI].
87 Blanchet, L. and Schäfer, G., “Gravitational wave tails and binary star systems”, Class. Quantum Grav., 10, 2699–2721 (1993). [External LinkDOI].
88 Bohé, A., Faye, G., Marsat, S. and Porter, E. K., “Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order”, Class. Quantum Grav., 32, 195010 (2015). [External LinkDOI], [External LinkarXiv:1501.01529 [gr-qc]].
89 Bohé, A., Marsat, S. and Blanchet, L., “Next-to-next-to-leading order spin-orbit effects in the gravitational wave flux and orbital phasing of compact binaries”, Class. Quantum Grav., 30, 135009 (2013). [External LinkarXiv:1303.7412].
90 Bohé, A., Marsat, S., Faye, G. and Blanchet, L., “Next-to-next-to-leading order spin-orbit effects in the near-zone metric and precession equations of compact binary systems”, Class. Quantum Grav., 30, 075017 (2013). [External LinkarXiv:1212.5520].
91 Bollini, C. G. and Giambiagi, J. J., “Lowest order ‘divergent’ graphs in v-dimensional space”, Phys. Lett. B, 40, 566–568 (1972). [External LinkDOI].
92 Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Numerical models of irrotational binary neutron stars in general relativity”, Phys. Rev. Lett., 82, 892–895 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9810072 [gr-qc]].
93 Bondi, H., van der Burg, M. G. J. and Metzner, A. W. K., “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A, 269, 21–52 (1962). [External LinkDOI], [External LinkADS].
94 Bonnor, W. B., “Spherical gravitational waves”, Philos. Trans. R. Soc. London, Ser. A, 251, 233–271 (1959). [External LinkDOI].
95 Bonnor, W. B. and Rotenberg, M. A., “Transport of momentum by gravitational waves: Linear approximation”, Proc. R. Soc. London, Ser. A, 265, 109–116 (1961). [External LinkDOI].
96 Bonnor, W. B. and Rotenberg, M. A., “Gravitational waves from isolated sources”, Proc. R. Soc. London, Ser. A, 289, 247–274 (1966). [External LinkDOI].
97 Boyle, M., Brown, D. A., Kidder, L. E., Mroué, A. H., Pfeiffer, H. P., Scheel, M. A., Cook, G. B. and Teukolsky, S. A., “High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions”, Phys. Rev. D, 76, 124038 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0710.0158 [gr-qc]].
98 Boyle, M., Buonanno, A., Kidder, L. E., Mroué, A. H., Pan, Y., Pfeiffer, H. P. and Scheel, M. A., “High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants”, Phys. Rev. D, 78, 104020 (2008). [External LinkDOI], [External LinkarXiv:0804.4184 [gr-qc]].
99 Braginsky, V. B. and Thorne, K. S., “Gravitational-wave bursts with memory and experimental prospects”, Nature, 327, 123–125 (1987). [External LinkDOI].
100 Breitenlohner, P. and Maison, D., “Dimensional renormalization and the action principle”, Commun. Math. Phys., 52, 11–38 (1977). [External LinkDOI].
101 Brenneman, L. W. and Reynolds, C. S., “Constraining Black Hole Spin via X-Ray Spectroscopy”, Astrophys. J., 652, 1028–1043 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0608502].
102 Brenneman, L. W. et al., “The Spin of the Supermassive Black Hole in NGC 3783”, Astrophys. J., 736, 103 (2011). [External LinkDOI], [External LinkarXiv:1104.1172 [astro-ph.HE]].
103 Breuer, R. and Rudolph, E., “Radiation reaction and energy loss in the post-Newtonian approximation of general relativity”, Gen. Relativ. Gravit., 13, 777 (1981). [External LinkDOI].
104 Bruhat, Y., “The Cauchy Problem”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 130–168, (Wiley, New York; London, 1962).
105 Buonanno, A., Chen, Y. and Vallisneri, M., “Detection template families for gravitational waves from the final stages of binary black-holes binaries: Nonspinning case”, Phys. Rev. D, 67, 024016 (2003). [External LinkDOI], [External Linkgr-qc/0205122].
106 Buonanno, A., Chen, Y. and Vallisneri, M., “Detection template families for precessing binaries of spinning compact binaries: Adiabatic limit”, Phys. Rev. D, 67, 104025 (2003). [External LinkDOI], [External Linkgr-qc/0211087].
107 Buonanno, A., Cook, G. B. and Pretorius, F., “Inspiral, merger, and ring-down of equal-mass black-hole binaries”, Phys. Rev. D, 75, 124018 (2007). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0610122].
108 Buonanno, A. and Damour, T., “Effective one-body approach to general relativistic two-body dynamics”, Phys. Rev. D, 59, 084006 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9811091].
109 Buonanno, A. and Damour, T., “Transition from inspiral to plunge in binary black hole coalescences”, Phys. Rev. D, 62, 064015 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0001013].
110 Buonanno, A., Faye, G. and Hinderer, T., “Spin effects on gravitational waves from inspiralling compact binaries at second post-Newtonian order”, Phys. Rev. D, 87, 044009 (2013). [External LinkDOI], [External LinkarXiv:1209.6349].
111 Buonanno, A., Iyer, B. R., Pan, Y., Ochsner, E. and Sathyaprakash, B. S., “Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors”, Phys. Rev. D, 80, 084043 (2009). [External LinkDOI], [External LinkarXiv:0907.0700 [gr-qc]].
112 Buonanno, A., Pan, Y., Pfeiffer, H. P., Scheel, M. A., Buchman, L. T. and Kidder, L. E., “Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonspinning, equal-mass black holes”, Phys. Rev. D, 79, 124028 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.0790 [gr-qc]].
113 Burke, W. L., “Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions”, J. Math. Phys., 12, 401–418 (1971). [External LinkDOI], [External LinkADS].
114 Burke, W. L. and Thorne, K. S., “Gravitational Radiation Damping”, in Carmeli, M., Fickler, S. I. and Witten, L., eds., Relativity, Proceedings of the Relativity Conference in the Midwest, held at Cincinnati, Ohio, June 2 – 6, 1969, pp. 209–228, (Plenum Press, New York; London, 1970).
115 Campanelli, M., “Understanding the fate of merging supermassive black holes”, Class. Quantum Grav., 22, S387 (2005). [External LinkDOI], [External Linkastro-ph/0411744].
116 Campanelli, M., Lousto, C. O., Marronetti, P. and Zlochower, Y., “Accurate Evolutions of Orbiting Black-Hole Binaries without Excision”, Phys. Rev. Lett., 96, 111101 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0511048].
117 Campanelli, M., Lousto, C. O., Zlochower, Y. and Merritt, D., “Large merger recoils and spin flips from generic black-hole binaries”, Astrophys. J. Lett., 659, L5–L8 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0701164 [gr-qc]].
118 Campbell, W. B., Macek, J. and Morgan, T. A., “Relativistic time-dependent multipole analysis for scalar, electromagnetic, and gravitational fields”, Phys. Rev. D, 15, 2156–2164 (1977). [External LinkDOI].
119 Campbell, W. B. and Morgan, T. A., “Debye Potentials For Gravitational Field”, Physica, 53(2), 264 (1971). [External LinkDOI].
120 Carmeli, M., “The equations of motion of slowly moving particles in the general theory of relativity”, Nuovo Cimento, 37, 842 (1965). [External LinkDOI].
121 Caudill, M., Cook, G. B., Grigsby, J. D. and Pfeiffer, H. P., “Circular orbits and spin in black-hole initial data”, Phys. Rev. D, 74, 064011 (2006). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0605053].
122 Chandrasekhar, S., “The Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 142, 1488–1540 (1965). [External LinkDOI], [External LinkADS].
123 Chandrasekhar, S. and Esposito, F. P., “The 21 2-Post-Newtonian Equations of Hydrodynamics and Radiation Reaction in General Relativity”, Astrophys. J., 160, 153–179 (1970). [External LinkDOI].
124 Chandrasekhar, S. and Nutku, Y., “The Second Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 158, 55–79 (1969). [External LinkDOI].
125 Chatziioannou, K., Poisson, E. and Yunes, N., “Tidal heating and torquing of a Kerr black hole to next-to-leading order in the tidal coupling”, Phys. Rev. D, 87, 044022 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1211.1686 [gr-qc]].
126 Chicone, C., Kopeikin, S. M., Mashhoon, B. and Retzloff, D. G., “Delay equations and radiation damping”, Phys. Lett. A, 285, 17–26 (2001). [External LinkDOI], [External Linkgr-qc/0101122].
127 Christodoulou, D., “Reversible and irreversible transformations in black-hole physics”, Phys. Rev. Lett., 25, 1596 (1970). [External LinkDOI].
128 Christodoulou, D., “Nonlinear Nature of Gravitation and Gravitational-Wave Experiments”, Phys. Rev. Lett., 67, 1486–1489 (1991). [External LinkDOI].
129 Christodoulou, D. and Ruffini, R., “Reversible transformations of a charged black hole”, Phys. Rev. D, 4, 3552–3555 (1971). [External LinkDOI].
130 Christodoulou, D. and Schmidt, B. G., “Convergent and Asymptotic Iteration Methods in General Relativity”, Commun. Math. Phys., 68, 275–289 (1979). [External LinkDOI].
131 Collins, J. C., Renormalization: An introduction to renormalization, the renormalization group, and the operator-product expansion, (Cambridge University Press, Cambridge; New York, 1984). [External LinkGoogle Books].
132 Cook, G. B., “Three-dimensional initial data for the collision of two black holes. II. Quasicircular orbits for equal-mass black holes”, Phys. Rev. D, 50, 5025–5032 (1994). [External LinkDOI], [External LinkADS].
133 Cook, G. B. and Pfeiffer, H. P., “Excision boundary conditions for black hole initial data”, Phys. Rev. D, 70, 104016 (2004). [External LinkDOI], [External LinkADS].
134 Cooperstock, F. I. and Booth, D. J., “Angular-Momentum Flux For Gravitational Radiation to Octupole Order”, Nuovo Cimento B, 62(1), 163–170 (1969). [External LinkDOI].
135 Corinaldesi, E. and Papapetrou, A., “Spinning test-particles in general relativity. II”, Proc. R. Soc. London, Ser. A, 209, 259–268 (1951). [External LinkDOI].
136 Crowley, R. J. and Thorne, K. S., “Generation of gravitational waves. II. Post-linear formalism revisited”, Astrophys. J., 215, 624–635 (1977). [External LinkDOI].
137 Cutler, C., Finn, L. S., Poisson, E. and Sussman, G. J., “Gravitational radiation from a particle in circular orbit around a black hole. II. Numerical results for the nonrotating case”, Phys. Rev. D, 47, 1511–1518 (1993). [External LinkDOI].
138 Cutler, C. and Flanagan, É. É., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?”, Phys. Rev. D, 49, 2658–2697 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9402014].
139 Cutler, C. et al., “The Last Three Minutes: Issues in Gravitational-Wave Measurements of Coalescing Compact Binaries”, Phys. Rev. Lett., 70, 2984–2987 (1993). [External LinkDOI], [External Linkastro-ph/9208005].
140 D’Alembert, J., Traité de Dynamique, (David L’Aine, Paris, 1743). [External LinkGoogle Books].
141 Damour, T., “Problème des deux corps et freinage de rayonnement en relativité générale”, C. R. Acad. Sci. Ser. II, 294, 1355–1357 (1982).
142 Damour, T., “Gravitational radiation and the motion of compact bodies”, in Deruelle, N. and Piran, T., eds., Rayonnement Gravitationnel / Gravitational Radiation, Proceedings of the Les Houches Summer School, 2 – 21 June 1982, pp. 59–144, (North-Holland, Amsterdam, 1983).
143 Damour, T., “Gravitational radiation reaction in the binary pulsar and the quadrupole formula controvercy”, Phys. Rev. Lett., 51, 1019–1021 (1983). [External LinkDOI].
144 Damour, T., “An Introduction to the Theory of Gravitational Radiation”, in Carter, B. and Hartle, J. B., eds., Gravitation in Astrophysics: Cargèse 1986, Proceedings of a NATO Advanced Study Institute on Gravitation in Astrophysics, Cargése, France, 15 – 31 July, 1986, NATO ASI Series B, 156, pp. 3–62, (Plenum Press, New York, 1987).
145 Damour, T., “The problem of motion in Newtonian and Einsteinian gravity”, in Hawking, S. W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 128–198, (Cambridge University Press, Cambridge; New York, 1987). [External LinkADS].
146 Damour, T., “Gravitational self-force in a Schwarzschild background and the effective one-body formalism”, Phys. Rev. D, 81, 024017 (2010). [External LinkDOI], [External LinkarXiv:0910.5533 [gr-qc]].
147 Damour, T. and Deruelle, N., “Lagrangien généralisé du système de deux masses ponctuelles, à l’approximation post-post-newtonienne de la relativité générale”, C. R. Acad. Sci. Ser. II, 293, 537–540 (1981).
148 Damour, T. and Deruelle, N., “Radiation reaction and angular momentum loss in small angle gravitational scattering”, Phys. Lett. A, 87, 81–84 (1981). [External LinkDOI].
149 Damour, T. and Deruelle, N., “General relativistic celestial mechanics of binary systems I. The post-Newtonian motion”, Ann. Inst. Henri Poincare A, 43, 107–132 (1985). Online version (accessed 17 October 2013):
External Linkhttp://www.numdam.org/item?id=AIHPA_1985__43_1_107_0.
150 Damour, T. and Deruelle, N., “General relativistic celestial mechanics of binary systems II. The post-Newtonian timing formula”, Ann. Inst. Henri Poincare A, 44, 263–292 (1986). Online version (accessed 17 October 2013):
External Linkhttp://www.numdam.org/item?id=AIHPA_1986__44_3_263_0.
151 Damour, T. and Esposito-Farèse, G., “Testing gravity to second post-Newtonian order: A field-theory approach”, Phys. Rev. D, 53, 5541–5578 (1996). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9506063].
152 Damour, T. and Gopakumar, A., “Gravitational recoil during binary black hole coalescence using the effective one body approach”, Phys. Rev. D, 73, 124006 (2006). [External LinkDOI], [External Linkgr-qc/0602117].
153 Damour, T., Gopakumar, A. and Iyer, B. R., “Phasing of gravitational waves from inspiralling eccentric binaries”, Phys. Rev. D, 70, 064028 (2004). [External LinkDOI], [External Linkgr-qc/0404128].
154 Damour, T. and Iyer, B. R., “Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors”, Phys. Rev. D, 43, 3259–3272 (1991). [External LinkDOI].
155 Damour, T. and Iyer, B. R., “Post-Newtonian generation of gravitational waves. II. The spin moments”, Ann. Inst. Henri Poincare A, 54, 115–164 (1991). Online version (accessed 17 October 2013):
External Linkhttp://www.numdam.org/item?id=AIHPA_1991__54_2_115_0.
156 Damour, T., Iyer, B. R., Jaranowski, P. and Sathyaprakash, B. S., “Gravitational waves from black hole binary inspiral and merger: The span of third post-Newtonian effective-one-body templates”, Phys. Rev. D, 67, 064028 (2003). [External LinkDOI], [External Linkgr-qc/0211041].
157 Damour, T., Iyer, B. R. and Sathyaprakash, B. S., “Improved filters for gravitational waves from inspiraling compact binaries”, Phys. Rev. D, 57, 885–907 (1998). [External LinkDOI], [External Linkgr-qc/9708034].
158 Damour, T., Iyer, B. R. and Sathyaprakash, B. S., “Frequency-domain P-approximant filters for time-truncated inspiral gravitational wave signals from compact binaries”, Phys. Rev. D, 62, 084036 (2000). [External LinkDOI], [External Linkgr-qc/0001023].
159 Damour, T., Iyer, B. R. and Sathyaprakash, B. S., “Comparison of search templates for gravitational waves from binary inspiral: 3.5PN update”, Phys. Rev. D, 66, 027502 (2002). [External LinkDOI], [External Linkgr-qc/0207021].
160 Damour, T., Jaranowski, P. and Schäfer, G., “Dynamical invariants for general relativistic two-body systems at the third post-Newtonian approximation”, Phys. Rev. D, 62, 044024 (2000). [External Linkgr-qc/9912092].
161 Damour, T., Jaranowski, P. and Schäfer, G., “On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation”, Phys. Rev. D, 62, 084011 (2000). [External LinkADS], [External Linkgr-qc/0005034].
162 Damour, T., Jaranowski, P. and Schäfer, G., “Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem”, Phys. Rev. D, 62, 021501(R) (2000). [External Linkgr-qc/0003051]. Erratum: Phys. Rev. D, 63, 029903(E) (2000).
163 Damour, T., Jaranowski, P. and Schäfer, G., “Dimensional regularization of the gravitational interaction of point masses”, Phys. Lett. B, 513, 147–155 (2001). [External LinkDOI], [External Linkgr-qc/0105038].
164 Damour, T., Jaranowski, P. and Schäfer, G., “Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries”, Phys. Rev. D, 63, 044021 (2001). [External LinkDOI], [External Linkgr-qc/0010040]. Erratum: Phys. Rev. D, 66, 029901(E) (2002).
165 Damour, T., Jaranowski, P. and Schäfer, G., “Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling”, Phys. Rev. D, 77, 064032 (2008). [External LinkDOI], [External LinkarXiv:0711.1048].
166 Damour, T., Jaranowski, P. and Schäfer, G., “Non-local-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems”, Phys. Rev. D, 89, 064058 (2014). [External LinkDOI], [External LinkarXiv:1401.4548 [gr-qc]].
167 Damour, T., Jaranowski, P. and Schäfer, G., “Fourth post-Newtonian effective one-body dynamics”, Phys. Rev. D, 91, 084024 (2015). [External LinkDOI], [External LinkarXiv:1502.07245 [gr-qc]].
168 Damour, T. and Nagar, A., “The Effective One-Body description of the Two-Body Problem”, in Blanchet, L., Spallicci, A. and Whiting, B., eds., Mass and Motion in General Relativity, Lectures from the CNRS School on Mass held in Orléans, France, 23 – 25 June 2008, Fundamental Theories of Physics, 162, pp. 211–252, (Springer, Dordrecht; New York, 2011). [External LinkDOI], [External LinkADS].
169 Damour, T. and Schäfer, G., “Lagrangians for n Point Masses at the Second Post-Newtonian Approximation of General Relativity”, Gen. Relativ. Gravit., 17, 879–905 (1985). [External LinkDOI].
170 Damour, T. and Schäfer, G., “Higher-Order Relativistic Periastron Advances in Binary Pulsars”, Nuovo Cimento B, 101, 127–176 (1988). [External LinkDOI].
171 Damour, T. and Schmidt, B. G., “Reliability of perturbation theory in general relativity”, J. Math. Phys., 31, 2441–2458 (1990). [External LinkDOI].
172 Damour, T., Soffel, M. and Xu, C., “General-relativistic celestial mechanics. I. Method and definition of reference systems”, Phys. Rev. D, 43, 3273–3307 (1991). [External LinkDOI], [External LinkADS].
173 Damour, T. and Taylor, J. H., “On the Orbital Period Change of the Binary Pulsar PSR 1913+16”, Astrophys. J., 366, 501–511 (1991). [External LinkDOI], [External LinkADS].
174 de Andrade, V. C., Blanchet, L. and Faye, G., “Third post-Newtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic-coordinate and ADM-Hamiltonian formalisms”, Class. Quantum Grav., 18, 753–778 (2001). [External LinkDOI], [External Linkgr-qc/0011063].
175 Deruelle, N., Sur les équations du mouvement et le rayonnement gravitationnel d’un système binaire en Relativité Générale, Ph.D. thesis, (Université Pierre et Marie Curie, Paris, 1982).
176 Detweiler, S., “Consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry”, Phys. Rev. D, 77, 124026 (2008). [External LinkDOI], [External LinkarXiv:0804.3529].
177 Detweiler, S., “Elementary Development of the Gravitational Self-Force”, in Blanchet, L., Spallicci, A. and Whiting, B., eds., Mass and Motion in General Relativity, Lectures from the CNRS School on Mass held in Orléans, France, 23 – 25 June 2008, Fundamental Theories of Physics, 162, pp. 271–307, (Springer, Dordrecht; New York, 2011). [External LinkDOI], [External LinkADS].
178 Detweiler, S. and Whiting, B. F., “Self-force via a Green’s function decomposition”, Phys. Rev. D, 67, 024025 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0202086].
179 Dixon, W. G., “Extended bodies in general relativity: Their description and motion”, in Ehlers, J., ed., Isolated Gravitating Systems in General Relativity (Sistemi gravitazionali isolati in relatività generale), Proceedings of the International School of Physics ‘Enrico Fermi’, Course 67, Varenna on Lake Como, Villa Monastero, Italy, 28 June – 10 July, 1976, pp. 156–219, (North-Holland, Amsterdam; New York, 1979).
180 Eder, E., “Existence, uniqueness and iterative construction of motions of charged particles with retarded interactions”, Ann. Inst. Henri Poincare A, 39, 1–27 (1983). Online version (accessed 17 October 2013):
External Linkhttp://www.numdam.org/item?id=AIHPA_1983__39_1_1_0.
181 Ehlers, J., “Isolated systems in general relativity”, Ann. N.Y. Acad. Sci., 336, 279–294 (1980). [External LinkDOI].
182 Ehlers, J., Rosenblum, A., Goldberg, J. N. and Havas, P., “Comments on gravitational radiation damping and energy loss in binary systems”, Astrophys. J. Lett., 208, L77–L81 (1976). [External LinkDOI], [External LinkADS].
183 Einstein, A., “Über Gravitationswellen”, Sitzungsber. K. Preuss. Akad. Wiss., 1918, 154–167 (1918). [External LinkADS]. Online version (accessed 31 January 2014):
External Linkhttp://echo.mpiwg-berlin.mpg.de/MPIWG:8HSP60BU.
184 Einstein, A., Infeld, L. and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math. (2), 39, 65–100 (1938). [External LinkDOI].
185 Epstein, R. and Wagoner, R. V., “Post-Newtonian Generation of Gravitational Waves”, Astrophys. J., 197, 717–723 (1975). [External LinkDOI], [External LinkADS].
186 Esposito, L. W. and Harrison, E. R., “Properties of the Hulse-Taylor binary pulsar system”, Astrophys. J. Lett., 196, L1–L2 (1975). [External LinkDOI].
187 Faber, J. A. and Rasio, F. A., “Binary Neutron Star Mergers”, Living Rev. Relativity, 15, lrr-2012-8 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.3858 [gr-qc]]. URL (accessed 6 October 2013):
http://www.livingreviews.org/lrr-2012-8.
188 Fabian, A. C. and Miniutti, G., “The X-ray spectra of accreting Kerr black holes”, in Wiltshire, D. L., Visser, M. and Scott, S. M., eds., The Kerr Spacetime: Rotating Black Holes in General Relativity,  9, (Cambridge University Press, Cambridge; New York, 2009). [External LinkADS], [External LinkarXiv:astro-ph/0507409].
189 Favata, M., “Post-Newtonian corrections to the gravitational-wave memory for quasicircular, inspiralling compact binaries”, Phys. Rev. D, 80, 024002 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.0069].
190 Favata, M., “Conservative corrections to the innermost stable circular orbit (ISCO) of a Kerr black hole: a new gauge-invariant post-Newtonian ISCO condition, and the ISCO shift due to test-particle spin and the gravitational self-force”, Phys. Rev. D, 83, 024028 (2011). [External LinkDOI], [External LinkarXiv:1010.2553].
191 Favata, M., “Conservative self-force correction to the innermost stable circular orbit: comparison with multiple post-Newtonian-based methods”, Phys. Rev. D, 83, 024027 (2011). [External LinkDOI], [External LinkarXiv:1008.4622].
192 Favata, M., “The gravitational-wave memory from eccentric binaries”, Phys. Rev. D, 84, 124013 (2011). [External LinkDOI], [External LinkarXiv:1108.3121].
193 Faye, G., Equations du mouvement d’un système binaire d’objets compact à l’approximation post-newtonienne, Ph.D. thesis, (Université Paris VI, Paris, 1999).
194 Faye, G., Blanchet, L. and Buonanno, A., “Higher-order spin effects in the dynamics of compact binaries I. Equations of motion”, Phys. Rev. D, 74, 104033 (2006). [External LinkDOI], [External Linkgr-qc/0605139].
195 Faye, G., Blanchet, L. and Iyer, B. R., “Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order”, Class. Quantum Grav., 32, 045016 (2015). [External LinkarXiv:1409.3546 [gr-qc]].
196 Faye, G., Jaranowski, P. and Schäfer, G., “Skeleton approximate solution of the Einstein field equations for multiple black-hole systems”, Phys. Rev. D, 69, 124029 (2004). [External LinkDOI], [External Linkgr-qc/0311018].
197 Faye, G., Marsat, S., Blanchet, L. and Iyer, B. R., “The third and a half post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries”, Class. Quantum Grav., 29, 175004 (2012). [External LinkDOI], [External LinkarXiv:1204.1043].
198 Finn, L. S. and Chernoff, D. F., “Observing binary inspiral in gravitational radiation: One interferometer”, Phys. Rev. D, 47, 2198–2219 (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9301003].
199 Fitchett, M. J., “The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binary system”, Mon. Not. R. Astron. Soc., 203, 1049–1062 (1983). [External LinkADS].
200 Flanagan, É.É. and Hinderer, T., “Constraining neutron star tidal Love numbers with gravitational wave detectors”, Phys. Rev. D, 77, 021502 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0709.1915 [astro-ph]].
201 Fock, V. A., “On motion of finite masses in general relativity”, J. Phys. (Moscow), 1(2), 81–116 (1939).
202 Fock, V. A., Theory of space, time and gravitation, (Pergamon, London, 1959).
203 Foffa, S. and Sturani, R., “Effective field theory calculation of conservative binary dynamics at third post-Newtonian order”, Phys. Rev. D, 84, 044031 (2011). [External LinkDOI], [External LinkarXiv:1104.1122 [gr-qc]].
204 Foffa, S. and Sturani, R., “The dynamics of the gravitational two-body problem in the post-Newtonian approximation at quadratic order in the Newton’s constant”, Phys. Rev. D, 87, 064011 (2012). [External LinkarXiv:1206.7087 [gr-qc]].
205 Foffa, S. and Sturani, R., “Tail terms in gravitational radiation reaction via effective field theory”, Phys. Rev. D, 87, 044056 (2013). [External LinkDOI], [External LinkarXiv:1111.5488 [gr-qc]].
206 Foffa, S. and Sturani, R., “Effective field theory methods to model compact binaries”, Class. Quantum Grav., 31, 043001 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1309.3474 [gr-qc]].
207 Fokker, A. D., “Ein invarianter Variationssatz für die Bewegung mehrerer elektrischer Massenteilchen”, Z. Phys., 58, 386–393 (1929). [External LinkDOI], [External LinkADS].
208 Friedman, J. L., Uryū, K. and Shibata, M., “Thermodynamics of binary black holes and neutron stars”, Phys. Rev. D, 65, 064035 (2002). [External LinkDOI]. Erratum: Phys. Rev. D, 70, 129904(E) (2004).
209 Fujita, R., “Gravitational Radiation for Extreme Mass Ratio Inspirals to the 14th Post-Newtonian Order”, Prog. Theor. Phys., 127, 583–590 (2012). [External LinkDOI], [External LinkarXiv:1104.5615 [gr-qc]].
210 Fujita, R., “Gravitational Waves from a Particle in Circular Orbits around a Schwarzschild Black Hole to the 22nd Post-Newtonian Order”, Prog. Theor. Phys., 128, 971–992 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1211.5535 [gr-qc]].
211 Futamase, T., “Gravitational radiation reaction in the Newtonian limit”, Phys. Rev. D, 28, 2373–2381 (1983). [External LinkDOI].
212 Futamase, T., “Strong-field point-particle limit and the equations of motion in the binary pulsar”, Phys. Rev. D, 36, 321–329 (1987). [External LinkDOI].
213 Futamase, T. and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact Binaries”, Living Rev. Relativity, 10, lrr-2007-2 (2007). [External LinkDOI], [External LinkADS]. URL (accessed 6 October 2013):
http://www.livingreviews.org/lrr-2007-2.
214 Futamase, T. and Schutz, B. F., “Newtonian and post-Newtonian approximations are asymptotic to general relativity”, Phys. Rev. D, 28, 2363–2372 (1983). [External LinkDOI].
215 Galley, C. R., Leibovich, A. K., Porto, R. A. and Ross, A., “The tail effect in gravitational radiation-reaction: time non-locality and renormalization group evolution”, arXiv, e-print, (2015). [External LinkarXiv:1511.07379 [gr-qc]].
216 Gal’tsov, D. V., Matiukhin, A. A. and Petukhov, V. I., “Relativistic corrections to the gravitational radiation of a binary system and the fine structure of the spectrum”, Phys. Lett. A, 77, 387–390 (1980). [External LinkDOI].
217 Gergely, L.Á., “Spin-spin effects in radiating compact binaries”, Phys. Rev. D, 61, 024035 (1999). [External LinkDOI], [External Linkgr-qc/9911082].
218 Gergely, L.Á., “Second post-Newtonian radiative evolution of the relative orientations of angular momenta in spinning compact binaries”, Phys. Rev. D, 62, 024007 (2000). [External LinkDOI], [External Linkgr-qc/0003037].
219 Geroch, R., “Multipole Moments. II. Curved Space”, J. Math. Phys., 11, 2580–2588 (1970). [External LinkDOI], [External LinkADS].
220 Geroch, R. and Horowitz, G. T., “Asymptotically simple does not imply asymptotically Minkowskian”, Phys. Rev. Lett., 40, 203–206 (1978).
221 Goldberger, W. D. and Ross, A., “Gravitational radiative corrections from effective field theory”, Phys. Rev. D, 81, 124015 (2010). [External LinkDOI], [External LinkarXiv:0912.4254].
222 Goldberger, W. D., Ross, A. and Rothstein, I. Z., “Black hole mass dynamics and renormalization group evolution”, Phys. Rev. D, 89, 124033 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1211.6095 [hep-th]].
223 Goldberger, W. D. and Rothstein, I. Z., “Effective field theory of gravity for extended objects”, Phys. Rev. D, 73, 104029 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0409156 [hep-th]].
224 Gopakumar, A. and Iyer, B. R., “Gravitational waves from inspiraling compact binaries: Angular momentum flux, evolution of the orbital elements and the waveform to the second post-Newtonian order”, Phys. Rev. D, 56, 7708–7731 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9710075].
225 Gopakumar, A. and Iyer, B. R., “Second post-Newtonian gravitational wave polarizations for compact binaries in elliptical orbits”, Phys. Rev. D, 65, 084011 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0110100].
226 Gopakumar, A., Iyer, B. R. and Iyer, S., “Second post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies”, Phys. Rev. D, 55, 6030–6053 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9703075].
227 Gou, L. et al., “The extreme spin of the black hole in Cygnus X-1”, Astrophys. J., 742, 85 (2011). [External LinkDOI], [External LinkarXiv:1106.3690 [astro-ph.HE]].
228 Gourgoulhon, E., Grandclément, P. and Bonazzola, S., “Binary black holes in circular orbits. I. A global spacetime approach”, Phys. Rev. D, 65, 044020 (2002). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0106015].
229 Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A. and Bonazzola, S., “Quasi-equilibrium sequences of synchronized and irrotational binary neutron stars in general relativity”, Phys. Rev. D, 63, 064029 (2001). [External LinkDOI], [External Linkgr-qc/0007028].
230 Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series and Products, (Academic Press, San Diego; London, 1980).
231 Gralla, S. E. and Wald, R. M., “A rigorous derivation of gravitational self-force”, Class. Quantum Grav., 25, 205009 (2008). [External LinkDOI], [External LinkarXiv:0806.3293].
232 Grandclément, P., Gourgoulhon, E. and Bonazzola, S., “Binary black holes in circular orbits. II. Numerical methods and first results”, Phys. Rev. D, 65, 044021 (2002). [External LinkDOI], [External LinkADS].
233 Grandclément, P. and Novak, J., “Spectral Methods for Numerical Relativity”, Living Rev. Relativity, 12, lrr-2009-1 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0706.2286 [gr-qc]]. URL (accessed 6 October 2013):
http://www.livingreviews.org/lrr-2009-1.
234 Grishchuk, L. P. and Kopeikin, S. M., “Equations of motion for isolated bodies with relativistic corrections including the radiation-reaction force”, in Kovalevsky, J. and Brumberg, V. A., eds., Relativity in Celestial Mechanics and Astrometry: High Precision Dynamical Theories and Observational Verifications, Proceedings of the 114th Symposium of the International Astronomical Union, held in Leningrad, USSR, May 28 – 31, 1985, pp. 19–34, (Reidel, Dordrecht; Boston, 1986).
235 Gultekin, K., Miller, M. C. and Hamilton, D. P., “Growth of Intermediate-Mass Black Holes in Globular Clusters”, Astrophys. J., 616, 221 (2004). [External LinkDOI], [External Linkastro-ph/0402532].
236 Hadamard, J., Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, (Hermann, Paris, 1932).
237 Hannam, M., Husa, S., González, J. A., Sperhake, U. and Brügmann, B., “Where post-Newtonian and numerical-relativity waveforms meet”, Phys. Rev. D, 77, 044020 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0706.1305].
238 Hansen, R. O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46–52 (1974). [External LinkDOI], [External LinkADS].
239 Hanson, A. J. and Regge, T., “The Relativistic Spherical Top”, Ann. Phys. (N.Y.), 87, 498–566 (1974). [External LinkDOI].
240 Hari Dass, N. D. and Soni, V., “Feynman graph derivation of the Einstein quadrupole formula”, J. Phys. A: Math. Gen., 15, 473–492 (1982). [External LinkDOI].
241 Hartung, J. and Steinhoff, J., “Next-to-leading order spin-orbit and spin(a)-spin(b) Hamiltonians for n gravitating spinning compact objects”, Phys. Rev. D, 83, 044008 (2011). [External LinkDOI], [External LinkarXiv:1011.1179 [gr-qc]].
242 Hartung, J. and Steinhoff, J., “Next-to-next-to-leading order post-Newtonian spin-orbit Hamiltonian for self-gravitating binaries”, Ann. Phys. (Berlin), 523, 783–790 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.3079 [gr-qc]].
243 Hartung, J. and Steinhoff, J., “Next-to-next-to-leading order post-Newtonian spin(1)-spin(2) Hamiltonian for self-gravitating binaries”, Ann. Phys. (Berlin), 523, 919–924 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.4294 [gr-qc]].
244 Hartung, J., Steinhoff, J. and Schäfer, G., “Next-to-next-to-leading order post-Newtonian linear-in-spin binary Hamiltonians”, Ann. Phys. (Berlin), 525, 359–394 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.6723 [gr-qc]].
245 Hergt, S. and Schäfer, G., “Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance”, Phys. Rev. D, 78, 124004 (2008). [External LinkDOI], [External LinkarXiv:0809.2208 [gr-qc]].
246 Hergt, S. and Schäfer, G., “Higher-order-in-spin interaction Hamiltonians for binary black holes from source terms of Kerr geometry in approximate ADM coordinates”, Phys. Rev. D, 77, 104001 (2008). [External LinkDOI], [External LinkarXiv:0712.1515 [gr-qc]].
247 Hergt, S., Steinhoff, J. and Schäfer, G., “The reduced Hamiltonian for next-to-leading-order spin-squared dynamics of general compact binaries”, Class. Quantum Grav., 27, 135007 (2010). [External LinkDOI], [External LinkarXiv:1002.2093 [gr-qc]].
248 Hopper, S., Kavanagh, C. and Ottewill, A. C., “Analytic self-force calculations in the post-Newtonian regime: eccentric orbits on a Schwarzschild background”, Phys. Rev. D, 93, 044010 (2016). [External LinkDOI], [External LinkarXiv:1512.01556 [gr-qc]].
249 Hotokezaka, K., Kyutoku, K. and Shibata, M., “Exploring tidal effects of coalescing binary neutron stars in numerical relativity”, Phys. Rev. D, 87, 044001 (2013). [External LinkDOI], [External LinkarXiv:1301.3555 [gr-qc]].
250 Hulse, R. A. and Taylor, J. H., “Discovery of a pulsar in a binary system”, Astrophys. J., 195, L51–L53 (1975). [External LinkDOI], [External LinkADS].
251 Hunter, A. J. and Rotenberg, M. A., “The double-series approximation method in general relativity. I. Exact solution of the (24) approximation. II. Discussion of ‘wave tails’ in the (2s) approximation”, J. Phys. A: Math. Gen., 2, 34–49 (1969). [External LinkDOI].
252 Isaacson, R. A. and Winicour, J., “Harmonic and Null Descriptions of Gravitational Radiation”, Phys. Rev., 168, 1451–1456 (1968). [External LinkDOI].
253 Itoh, Y., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Third post-Newtonian order”, Phys. Rev. D, 69, 064018 (2004). [External LinkDOI].
254 Itoh, Y., “Third-and-a-half order post-Newtonian equations of motion for relativistic compact binaries using the strong field point particle limit”, Phys. Rev. D, 80, 124003 (2009). [External LinkDOI], [External LinkarXiv:0911.4232 [gr-qc]].
255 Itoh, Y. and Futamase, T., “New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R) (2003). [External LinkDOI], [External Linkgr-qc/0310028].
256 Itoh, Y....., Futamase, T. and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Formulation, the first post-Newtonian order, and multipole terms”, Phys. Rev. D, 62, 064002 (2000). [External LinkDOI], [External Linkgr-qc/9910052].
257 Itoh, Y., Futamase, T. and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: The second and half post-Newtonian order”, Phys. Rev. D, 63, 064038 (2001). [External LinkDOI], [External Linkgr-qc/0101114].
258 Iyer, B. R. and Will, C. M., “Post-Newtonian gravitational radiation reaction for two-body systems”, Phys. Rev. Lett., 70, 113–116 (1993). [External LinkDOI].
259 Iyer, B. R. and Will, C. M., “Post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies”, Phys. Rev. D, 52, 6882–6893 (1995). [External LinkDOI].
260 Jaranowski, P. and Schäfer, G., “Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems”, Phys. Rev. D, 55, 4712–4722 (1997). [External LinkDOI].
261 Jaranowski, P. and Schäfer, G., “Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems”, Phys. Rev. D, 57, 7274–7291 (1998). [External LinkDOI], [External Linkgr-qc/9712075].
262 Jaranowski, P. and Schäfer, G., “Binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003 (1999). [External LinkDOI], [External Linkgr-qc/9906092].
263 Jaranowski, P. and Schäfer, G., “The binary black-hole dynamics at the third post-Newtonian order in the orbital motion”, Ann. Phys. (Berlin), 9, 378–383 (2000). [External LinkDOI], [External Linkgr-qc/0003054].
264 Jaranowski, P. and Schäfer, G., “Towards the fourth post-Newtonian Hamiltonian for two-point-mass systems”, Phys. Rev. D, 86, 061503(R) (2012). [External LinkDOI], [External LinkarXiv:1207.5448 [gr-qc]].
265 Jaranowski, P. and Schäfer, G., “Dimensional regularization of local singularities in the 4th post-Newtonian two-point-mass Hamiltonian”, Phys. Rev. D, 87, 081503(R) (2013). [External LinkDOI], [External LinkarXiv:1303.3225 [gr-qc]].
266 Jaranowski, P. and Schäfer, G., “Derivation of the local-in-time fourth post-Newtonian ADM Hamiltonian for spinless compact binaries”, Phys. Rev. D, 92, 124043 (2015). [External LinkDOI], [External LinkarXiv:1508.01016 [gr-qc]].
267 Junker, W. and Schäfer, G., “Binary systems: higher order gravitational radiation damping and wave emission”, Mon. Not. R. Astron. Soc., 254, 146–164 (1992). [External LinkADS].
268 Kavanagh, C., Ottewill, A. C. and Wardell, B., “Analytical high-order post-Newtonian expansions for extreme mass ratio binaries”, Phys. Rev. D, 92, 084025 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1503.02334 [gr-qc]].
269 Kerlick, G. D., “Finite reduced hydrodynamic equations in the slow-motion approximation to general relativity. Part I. First post-Newtonian equations”, Gen. Relativ. Gravit., 12, 467–482 (1980). [External LinkDOI].
270 Kerlick, G. D., “Finite reduced hydrodynamic equations in the slow-motion approximation to general relativity. Part II. Radiation reaction and higher-order divergent terms”, Gen. Relativ. Gravit., 12, 521–543 (1980). [External LinkDOI].
271 Kidder, L. E., “Coalescing binary systems of compact objects to (post)52-Newtonian order. V. Spin effects”, Phys. Rev. D, 52, 821–847 (1995). [External LinkDOI], [External LinkADS].
272 Kidder, L. E., “Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbits”, Phys. Rev. D, 77, 044016 (2008). [External LinkDOI], [External LinkarXiv:0710.0614].
273 Kidder, L. E., Blanchet, L. and Iyer, B. R., “A note on the radiation reaction in the 2.5PN waveform from inspiralling binaries in quasi-circular orbits”, Class. Quantum Grav., 24, 5307 (2007). [External LinkDOI], [External LinkarXiv:0706.0726].
274 Kidder, L. E., Will, C. M. and Wiseman, A. G., “Coalescing binary systems of compact objects to (post)52-Newtonian order. III. Transition from inspiral to plunge”, Phys. Rev. D, 47, 3281–3291 (1993). [External LinkDOI], [External LinkADS].
275 Kidder, L. E., Will, C. M. and Wiseman, A. G., “Spin effects in the inspiral of coalescing compact binaries”, Phys. Rev. D, 47, R4183–R4187 (1993). [External LinkDOI].
276 Kochanek, C. S., “Coalescing binary neutron stars”, Astrophys. J., 398, 234–247 (1992). [External LinkDOI], [External LinkADS].
277 Kol, B. and Smolkin, M., “Non-relativistic gravitation: From Newton to Einstein and back”, Class. Quantum Grav., 25, 145011 (2008). [External LinkDOI], [External LinkarXiv:0712.4116 [hep-th]].
278 Königsdörffer, C., Faye, G. and Schäfer, G., “The binary black-hole dynamics at the third-and-a-half post-Newtonian order in the ADM-formalism”, Phys. Rev. D, 68, 044004 (2003). [External LinkDOI], [External Linkastro-ph/0305048].
279 Königsdörffer, C. and Gopakumar, A., “Phasing of gravitational waves from inspiralling eccentric binaries at the third-and-a-half post-Newtonian order”, Phys. Rev. D, 73, 124012 (2006). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0603056].
280 Kopeikin, S. M., “The equations of motion of extended bodies in general-relativity with conservative corrections and radiation damping taken into account”, Astron. Zh., 62, 889–904 (1985).
281 Kopeikin, S. M., “Celestial Coordinate Reference Systems in Curved Spacetime”, Celest. Mech., 44, 87 (1988). [External LinkDOI].
282 Kopeikin, S. M., Schäfer, G., Gwinn, C. R. and Eubanks, T. M., “Astrometric and timing effects of gravitational waves from localized sources”, Phys. Rev. D, 59, 084023 (1999). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9811003].
283 Kozai, Y., “Secular perturbations of asteroids with high inclination and eccentricity”, Astron. J., 67, 591–598 (1962). [External LinkDOI], [External LinkADS].
284 Królak, A., Kokkotas, K. D. and Schäfer, G., “Estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary”, Phys. Rev. D, 52, 2089–2111 (1995). [External LinkDOI], [External Linkgr-qc/9503013].
285 Landau, L. D. and Lifshitz, E. M., The classical theory of fields, (Pergamon Press, Oxford; New York, 1971), 3rd edition.
286 Le Tiec, A., “First law of mechanics for compact binaries on eccentric orbits”, Phys. Rev. D, 92, 084021 (2015). [External LinkDOI], [External LinkarXiv:1506.05648 [gr-qc]].
287 Le Tiec, A., Barausse, E. and Buonanno, A., “Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems”, Phys. Rev. Lett., 108, 131103 (2012). [External LinkDOI], [External LinkarXiv:1111.5609 [gr-qc]].
288 Le Tiec, A. and Blanchet, L., “The Close-Limit Approximation for Black Hole Binaries with Post-Newtonian Initial Conditions”, Class. Quantum Grav., 27, 045008 (2010). [External LinkDOI], [External LinkarXiv:0901.4593 [gr-qc]].
289 Le Tiec, A., Blanchet, L. and Whiting, B. F., “First law of binary black hole mechanics in general relativity and post-Newtonian theory”, Phys. Rev. D, 85, 064039 (2012). [External LinkDOI], [External LinkarXiv:1111.5378 [gr-qc]].
290 Le Tiec, A., Blanchet, L. and Will, C. M., “Gravitational-Wave Recoil from the Ringdown Phase of Coalescing Black Hole Binaries”, Class. Quantum Grav., 27, 012001 (2010). [External LinkDOI], [External LinkarXiv:0901.4594 [gr-qc]].
291 Le Tiec, A., Mroué, A. H., Barack, L., Buonanno, A., Pfeiffer, H. P., Sago, N. and Taracchini, A., “Periastron Advance in Black-Hole Binaries”, Phys. Rev. Lett., 107, 141101 (2011). [External LinkarXiv:1106.3278 [gr-qc]].
292 Levi, M., “Next-to-leading order gravitational spin-orbit coupling in an effective field theory approach”, Phys. Rev. D, 82, 104004 (2010). [External LinkDOI], [External LinkarXiv:1006.4139 [gr-qc]].
293 Levi, M., “Next-to-leading order gravitational spin1-spin2 coupling with Kaluza-Klein reduction”, Phys. Rev. D, 82, 064029 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0802.1508 [gr-qc]].
294 Levi, M., “Binary dynamics from spin1-spin2 coupling at fourth post-Newtonian order”, Phys. Rev. D, 85, 064043 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.4322].
295 Levi, M. and Steinhoff, J., “Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals”, J. Cosmol. Astropart. Phys., 2014(12), 003 (2014). [External LinkDOI], [External LinkarXiv:1408.5762 [gr-qc]].
296 Levi, M. and Steinhoff, J., “Leading order finite size effects with spins for inspiralling compact binaries”, J. High Energy Phys., 2015(06), 059 (2015). [External LinkDOI], [External LinkarXiv:1410.2601 [gr-qc]].
297 Levi, M. and Steinhoff, J., “Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme”, arXiv, e-print, (2015). [External LinkarXiv:1506.05056 [gr-qc]].
298 Levi, M. and Steinhoff, J., “Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme”, arXiv, e-print, (2015). [External LinkarXiv:1506.05794 [gr-qc]].
299 Levi, M. and Steinhoff, J., “Spinning gravitating objects in the effective field theory in the post-Newtonian scheme”, J. High Energy Phys., 2015(09), 219 (2015). [External LinkDOI], [External LinkarXiv:1501.04956 [gr-qc]].
300 Lidov, M. L., “The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies”, Planet. Space Sci., 9, 719 (1962). [External LinkDOI].
301 Limousin, F., Gondek-Rosinska, D. and Gourgoulhon, E., “Last orbits of binary strange quark stars”, Phys. Rev. D, 71, 064012 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0411127 [gr-qc]].
302 Lincoln, C. W. and Will, C. M., “Coalescing binary systems of compact objects to (post)52-Newtonian order: Late-time evolution and gravitational-radiation emission”, Phys. Rev. D, 42, 1123–1143 (1990). [External LinkDOI], [External LinkADS].
303 Lorentz, H. A. and Droste, J., “The motion of a system of bodies under the influence of their mutual attraction, according to Einstein’s theory”, in The Collected Papers of H.A. Lorentz, Vol. 5, pp. 330–355, (Nijhoff, The Hague, 1937). [External LinkDOI], Translated from Versl. K. Akad. Wet. Amsterdam, 26, 392 and 649 (1917).
304 Madore, J., “Gravitational radiation from a bounded source. I”, Ann. Inst. Henri Poincare, 12, 285–305 (1970). Online version (accessed 6 October 2013):
External Linkhttp://www.numdam.org/item?id=AIHPA_1970__12_3_285_0.
305 Marsat, S., “Cubic order spin effects in the dynamics and gravitational wave energy flux of compact object binaries”, Class. Quantum Grav., 32, 085008 (2015). [External LinkDOI], [External LinkarXiv:1411.4118 [gr-qc]].
306 Marsat, S., Bohé, A., Blanchet, L. and Buonanno, A., “Next-to-leading tail-induced spin-orbit effects in the gravitational radiation of compact binaries”, Class. Quantum Grav., 31, 025023 (2013). [External LinkDOI], [External LinkarXiv:1307.6793 [gr-qc]].
307 Marsat, S., Bohé, A., Faye, G. and Blanchet, L., “Next-to-next-to-leading order spin-orbit effects in the equations of motion of compact binary systems”, Class. Quantum Grav., 30, 055007 (2013). [External LinkDOI], [External LinkarXiv:1210.4143].
308 Martin, J. and Sanz, J. L., “Slow motion approximation in predictive relativistic mechanics. II. Non-interaction theorem for interactions derived from the classical field-theory”, J. Math. Phys., 20, 25–34 (1979). [External LinkDOI].
309 Mathews, J., “Gravitational multipole radiation”, J. Soc. Ind. Appl. Math., 10, 768–780 (1962). [External LinkDOI].
310 Mathisson, M., “Republication of: New mechanics of material systems”, Gen. Relativ. Gravit., 42, 1011–1048 (2010). [External LinkDOI].
311 McClintock, J. E., Shafee, R., Narayan, R., Remillard, R. A., Davis, S. W. and Li, L.-X., “The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105”, Astrophys. J., 652, 518–539 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0606076].
312 Memmesheimer, R., Gopakumar, A. and Schäfer, G., “Third post-Newtonian accurate generalized quasi-Keplerian parametrization for compact binaries in eccentric orbits”, Phys. Rev. D, 70, 104011 (2004). [External LinkDOI], [External Linkgr-qc/0407049].
313 Merritt, D., Milosavljević, M., Favata, M., Hughes, S. A. and Holz, D. E., “Consequences of Gravitational Radiation Recoil”, Astrophys. J. Lett., 607, L9–L12 (2004). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0402057].
314 Mikóczi, B., Vasúth, M. and Gergely, L.Á., “Self-interaction spin effects in inspiralling compact binaries”, Phys. Rev. D, 71, 124043 (2005). [External LinkDOI], [External Linkastro-ph/0504538].
315 Miller, M. C. and Hamilton, D. P., “Four-Body Effects in Globular Cluster Black Hole Coalescence”, Astrophys. J., 576, 894 (2002). [External LinkDOI], [External Linkastro-ph/0202298].
316 Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H. and Tanaka, T., “Black Hole Perturbation”, Prog. Theor. Phys. Suppl., 128, 1–121 (1997). [External LinkDOI], [External Linkgr-qc/9712057].
317 Mino, Y., Sasaki, M. and Tanaka, T., “Gravitational radiation reaction to a particle motion”, Phys. Rev. D, 55, 3457–3476 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9606018].
318 Mirshekari, S. and Will, C. M., “Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order”, Phys. Rev. D, 87, 084070 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1301.4680 [gr-qc]].
319 Misner, C. W., Thorne, K. S. and Wheeler, J. A., Gravitation, (W. H. Freeman, San Francisco, 1973). [External LinkADS].
320 Mora, T. and Will, C. M., “Post-Newtonian diagnostic of quasi-equilibrium binary configurations of compact objects”, Phys. Rev. D, 69, 104021 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0312082].
321 Moritz, H., Advanced Physical Geodesy, (H. Wichmann, Karlsruhe, 1980).
322 Nissanke, S. and Blanchet, L., “Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order”, Class. Quantum Grav., 22, 1007–1031 (2005). [External LinkDOI], [External Linkgr-qc/0412018].
323 Nowak, M. A., Wilms, J., Pottschmidt, K., Schulz, N., Miller, J. and Maitra, D., “Suzaku observations of 4U 1957+11: The most rapidly spinning black hole in the galaxy?”, in Petre, R., Mitsuda, K. and Angelini, L., eds., SUZAKU 2011. Exploring the X-ray Universe: Suzaku and Beyond (SUZAKU 2011), Palo Alto, California, USA, 20 – 22 July 2011, AIP Conference Proceedings, 1427, pp. 48–51, (AIP Publishing, Melville, NY, 2012). [External LinkDOI], [External LinkADS].
324 Ohta, T., Okamura, H., Kimura, T. and Hiida, K., “Physically acceptable solution of Einstein’s equation for many-body system”, Prog. Theor. Phys., 50, 492–514 (1973). [External LinkDOI].
325 Ohta, T., Okamura, H., Kimura, T. and Hiida, K., “Coordinate Condition and Higher Order Gravitational Potential in Canocical Formalism”, Prog. Theor. Phys., 51, 1598–1612 (1974). [External LinkDOI].
326 Ohta, T., Okamura, H., Kimura, T. and Hiida, K., “Higher-order gravitational potential for many-body system”, Prog. Theor. Phys., 51, 1220–1238 (1974). [External LinkDOI].
327 Okamura, H., Ohta, T., Kimura, T. and Hiida, K., “Perturbation calculation of gravitational potentials”, Prog. Theor. Phys., 50, 2066–2079 (1973). [External LinkDOI].
328 Owen, B. J., Tagoshi, H. and Ohashi, A., “Nonprecessional spin-orbit effects on gravitational waves from inspiraling compact binaries to second post-Newtonian order”, Phys. Rev. D, 57, 6168–6175 (1998). [External LinkDOI], [External Linkgr-qc/9710134].
329 Pan, Y., Buonanno, A., Buchman, L. T., Chu, T., Kidder, L. E., Pfeiffer, H. P. and Scheel, M. A., “Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of non-precessing, spinning, equal-mass black holes”, Phys. Rev. D, 81, 084041 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.3466 [gr-qc]].
330 Papapetrou, A., “Equations of motion in general relativity”, Proc. Phys. Soc. London, Sect. B, 64, 57–75 (1951).
331 Papapetrou, A., “Spinning Test-Particles in General Relativity. I”, Proc. R. Soc. London, Ser. A, 209, 248–258 (1951). [External LinkDOI].
332 Papapetrou, A., “Relativité – une formule pour le rayonnement gravitationnel en première approximation”, C. R. Acad. Sci. Ser. II, 255, 1578 (1962).
333 Papapetrou, A., “Étude systématique du rayonnement gravitationnel 4-polaire. Énergie-impulsion et moment cinétique du rayonnement”, Ann. Inst. Henri Poincare, XIV, 79 (1971).
334 Papapetrou, A. and Linet, B., “Equation of motion including the reaction of gravitational radiation”, Gen. Relativ. Gravit., 13, 335 (1981). [External LinkDOI].
335 Pati, M. E. and Will, C. M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015 (2000). [External LinkDOI], [External Linkgr-qc/0007087].
336 Pati, M. E. and Will, C. M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation reaction to 3.5 post-Newtonian order”, Phys. Rev. D, 65, 104008 (2002). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0201001].
337 Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66–68 (1963). [External LinkDOI], [External LinkADS].
338 Penrose, R., “Zero Rest-Mass Fields Including Gravitation: Asymptotic Behaviour”, Proc. R. Soc. London, Ser. A, 284, 159–203 (1965). [External LinkDOI], [External LinkADS].
339 Peters, P. C., “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev., 136, B1224–B1232 (1964). [External LinkDOI], [External LinkADS].
340 Peters, P. C. and Mathews, J., “Gravitational Radiation from Point Masses in a Keplerian Orbit”, Phys. Rev., 131, 435–440 (1963). [External LinkDOI], [External LinkADS].
341 Petrova, N. M., “Ob Uravnenii Dvizheniya i Tenzore Materii dlya Sistemy Konechnykh Mass v Obshchei Teorii Otnositielnosti”, J. Exp. Theor. Phys., 19(11), 989–999 (1949).
342 Pfeiffer, H. P., Teukolsky, S. A. and Cook, G. B., “Quasicircular orbits for spinning binary black holes”, Phys. Rev. D, 62, 104018 (2000). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0006084].
343 Pirani, F. A. E., “Introduction to Gravitational Radiation Theory”, in Trautman, A., Pirani, F. A. E. and Bondi, H., eds., Lectures on General Relativity, Vol. 1, Brandeis Summer Institute in Theoretical Physics 1964, pp. 249–373, (Prentice-Hall, Englewood Cliffs, NJ, 1965). [External LinkADS].
344 Plebański, J. F. and Bażański, S. L., “The general Fokker action principle and its application in general relativity theory”, Acta Phys. Pol., 18, 307–345 (1959).
345 Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. I. Analytic results for the nonrotating case”, Phys. Rev. D, 47, 1497–1510 (1993). [External LinkDOI], [External LinkADS].
346 Poisson, E., “Gravitational radiation from a particle in circular orbit around a black-hole. VI. Accuracy of the post-Newtonian expansion”, Phys. Rev. D, 52, 5719–5723 (1995). [External LinkDOI], [External Linkgr-qc/9505030]. Erratum: Phys. Rev. D, 55, 7980 (1997).
347 Poisson, E., “Gravitational waves from inspiraling compact binaries: The quadrupole-moment term”, Phys. Rev. D, 57, 5287–5290 (1997). [External LinkDOI], [External Linkgr-qc/9709032].
348 Poisson, E., Pound, A. and Vega, I., “The Motion of Point Particles in Curved Spacetime”, Living Rev. Relativity, 14, lrr-2011-7 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.0529 [gr-qc]]. URL (accessed 6 October 2013):
http://www.livingreviews.org/lrr-2011-7.
349 Poisson, E. and Sasaki, M., “Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections”, Phys. Rev. D, 51, 5753–5767 (1995). [External LinkDOI], [External Linkgr-qc/9412027].
350 Poisson, E. and Will, C. M., “Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian wave forms”, Phys. Rev. D, 52, 848–855 (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9502040].
351 Porto, R. A., “Post-Newtonian corrections to the motion of spinning bodies in NRGR”, Phys. Rev. D, 73, 104031 (2006). [External LinkDOI], [External Linkgr-qc/0511061].
352 Porto, R. A., “Next-to-leading-order spin–orbit effects in the motion of inspiralling compact binaries”, Class. Quantum Grav., 27, 205001 (2010). [External LinkDOI], [External LinkarXiv:1005.5730 [gr-qc]].
353 Porto, R. A., Ross, A. and Rothstein, I. Z., “Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order”, J. Cosmol. Astropart. Phys., 2011(3), 009 (2011). [External LinkDOI], [External LinkarXiv:1007.1312 [gr-qc]].
354 Porto, R. A. and Rothstein, I. Z., “Calculation of the first nonlinear contribution to the general-relativistic spin-spin interaction for binary systems”, Phys. Rev. Lett., 97, 021101 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0604099].
355 Porto, R. A. and Rothstein, I. Z., “Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries”, Phys. Rev. D, 78, 044013 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0804.0260 [gr-qc]].
356 Porto, R. A. and Rothstein, I. Z., “Spin(1)spin(2) effects in the motion of inspiralling compact binaries at third order in the post-Newtonian expansion”, Phys. Rev. D, 78, 044012 (2008). [External LinkDOI], [External LinkarXiv:0802.0720 [gr-qc]].
357 Poujade, O. and Blanchet, L., “Post-Newtonian approximation for isolated systems calculated by matched asymptotic expansions”, Phys. Rev. D, 65, 124020 (2002). [External LinkDOI], [External Linkgr-qc/0112057].
358 Press, W. H., “Gravitational Radiation from Sources Which Extend Into Their Own Wave Zone”, Phys. Rev. D, 15, 965–968 (1977). [External LinkDOI].
359 Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0507014].
360 Quinn, T. C. and Wald, R. M., “Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381–3394 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9610053].
361 Rendall, A. D., “Convergent and divergent perturbation series and the post-Minkowskian scheme”, Class. Quantum Grav., 7, 803 (1990). [External LinkDOI].
362 Rendall, A. D., “On the definition of post-Newtonian approximations”, Proc. R. Soc. London, Ser. A, 438, 341–360 (1992). [External LinkDOI].
363 Rendall, A. D., “The Newtonian limit for asymptotically flat solutions of the Einstein-Vlasov system”, Commun. Math. Phys., 163, 89–112 (1994). [External LinkDOI], [External Linkgr-qc/9303027].
364 Reynolds, C. S., “Measuring Black Hole Spin Using X-Ray Reflection Spectroscopy”, Space Sci. Rev., 183, 277–294 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.3260 [astro-ph.HE]].
365 Riesz, M., “L’intégrale de Riemann–Liouville et le problème de Cauchy”, Acta Math., 81, 1–218 (1949). [External LinkDOI].
366 Rieth, R. and Schäfer, G., “Spin and tail effects in the gravitational-wave emission of compact binaries”, Class. Quantum Grav., 14, 2357 (1997). [External LinkDOI].
367 Sachs, R. K., “Gravitational waves in general relativity. VI. The outgoing radiation condition”, Proc. R. Soc. London, Ser. A, 264, 309–338 (1961). [External LinkDOI].
368 Sachs, R. K., “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat Space-Time”, Proc. R. Soc. London, Ser. A, 270, 103–126 (1962). [External LinkDOI], [External LinkADS].
369 Sachs, R. K. and Bergmann, P. G., “Structure of Particles in Linearized Gravitational Theory”, Phys. Rev., 112, 674–680 (1958). [External LinkDOI].
370 Sago, N., Barack, L. and Detweiler, S., “Two approaches for the gravitational self force in black hole spacetime: Comparison of numerical results”, Phys. Rev. D, 78, 124024 (2008). [External LinkDOI], [External LinkarXiv:0810.2530].
371 Santamaría, L. et al., “Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for non-precessing black hole binaries”, Phys. Rev. D, 82, 064016 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.3306 [gr-qc]].
372 Sasaki, M., “Post-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler Function”, Prog. Theor. Phys., 92, 17–36 (1994). [External LinkDOI].
373 Sasaki, M. and Tagoshi, H., “Analytic Black Hole Perturbation Approach to Gravitational Radiation”, Living Rev. Relativity, 6, lrr-2003-6 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0306120]. URL (accessed 6 October 2013):
http://www.livingreviews.org/lrr-2003-6.
374 Schäfer, G., “Acceleration-dependent Lagrangians in general relativity”, Phys. Lett. A, 100, 128 (1984). [External LinkDOI].
375 Schäfer, G., “The Gravitational Quadrupole Radiation-Reaction Force and the Canonical Formalism of ADM”, Ann. Phys. (N.Y.), 161, 81–100 (1985). [External LinkDOI].
376 Schäfer, G., “The ADM Hamiltonian at the Postlinear Approximation”, Gen. Relativ. Gravit., 18, 255–270 (1986). [External LinkDOI].
377 Schäfer, G., “Three-body Hamiltonian in general relativity”, Phys. Lett., 123, 336–339 (1987). [External LinkDOI].
378 Schäfer, G., “Post-Newtonian Methods: Analytic Results on the Binary Problem”, in Blanchet, L., Spallicci, A. and Whiting, B., eds., Mass and Motion in General Relativity, Lectures from the CNRS School on Mass held in Orléans, France, 23 – 25 June 2008, Fundamental Theories of Physics, 162, pp. 167–210, (Springer, Dordrecht; New York, 2011). [External LinkDOI], [External LinkADS].
379 Schäfer, G. and Wex, N., “Second post-Newtonian motion of compact binaries”, Phys. Lett. A, 174, 196–205 (1993). [External LinkDOI]. Erratum: Phys. Lett. A, 177, 461 (1993).
380 Schwartz, L., “Sur l’impossibilité de la multiplication des distributions”, C. R. Acad. Sci. Ser. II, 239, 847–848 (1954).
381 Schwartz, L., Théorie des distributions, (Hermann, Paris, 1978).
382 Sellier, A., “Hadamard’s finite part concept in dimension n 2, distributional definition, regularization forms and distributional derivatives”, Proc. R. Soc. London, Ser. A, 445, 69–98 (1994). [External LinkDOI].
383 Shah, A., Friedmann, J. and Whiting, B. F., “Finding high-order analytic post-Newtonian parameters from a high-precision numerical self-force calculation”, Phys. Rev. D, 89, 064042 (2014). [External LinkDOI], [External LinkarXiv:1312.1952 [gr-qc]].
384 Simon, W. and Beig, R., “The multipole structure of stationary space-times”, J. Math. Phys., 24, 1163–1171 (1983). [External LinkDOI].
385 Sopuerta, C. F., Yunes, N. and Laguna, P., “Gravitational Recoil from Binary Black Hole Mergers: the Close-Limit Approximation”, Phys. Rev. D, 74, 124010 (2006). [External LinkDOI], [External Linkastro-ph/0608600].
386 Steinhoff, J., “Canonical formulation of spin in general relativity”, Ann. Phys. (Berlin), 523, 296 (2011). [External LinkDOI], [External LinkarXiv:1106.4203 [gr-qc]].
387 Steinhoff, J., Hergt, S. and Schäfer, G., “Next-to-leading order gravitational spin(1)-spin(2) dynamics in Hamiltonian form”, Phys. Rev. D, 77, 081501(R) (2008). [External LinkarXiv:0712.1716 [gr-qc]].
388 Steinhoff, J., Hergt, S. and Schäfer, G., “Spin-squared Hamiltonian of next-to-leading order gravitational interaction”, Phys. Rev. D, 78, 101503(R) (2008). [External LinkarXiv:0809.2200 [gr-qc]].
389 Steinhoff, J., Schäfer, G. and Hergt, S., “ADM canonical formalism for gravitating spinning objects”, Phys. Rev. D, 77, 104018 (2008). [External LinkDOI], [External LinkarXiv:0805.3136 [gr-qc]].
390 Strohmayer, T. E., “Discovery of a 450 Hz quasi-periodic oscillation from the microquasar GRO J1655–40 with the Rossi X-ray Timing Explorer”, Astrophys. J. Lett., 552, L49–L53 (2001). [External LinkDOI], [External LinkADS].
391 ’t Hooft, G. and Veltman, M., “Regularization and renormalization of gauge fields”, Nucl. Phys. B, 44, 139 (1972). [External LinkDOI].
392 Tagoshi, H., Mano, S. and Takasugi, E., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbits around a Rotating Black Hole”, Prog. Theor. Phys., 98, 829 (1997). [External LinkDOI], [External Linkgr-qc/9711072].
393 Tagoshi, H. and Nakamura, T., “Gravitational waves from a point particle in circular orbit around a black hole: Logarithmic terms in the post-Newtonian expansion”, Phys. Rev. D, 49, 4016–4022 (1994). [External LinkDOI].
394 Tagoshi, H., Ohashi, A. and Owen, B. J., “Gravitational field and equations of motion of spinning compact binaries to 2.5-post-Newtonian order”, Phys. Rev. D, 63, 044006 (2001). [External LinkDOI], [External Linkgr-qc/0010014].
395 Tagoshi, H. and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 92, 745–771 (1994). [External LinkDOI], [External Linkgr-qc/9405062].
396 Tagoshi, H., Shibata, M., Tanaka, T. and Sasaki, M., “Post-Newtonian expansion of gravitational waves from a particle in circular orbit around a rotating black hole: Up to O(v8) beyond the quadrupole formula”, Phys. Rev. D, 54, 1439–1459 (1996). [External LinkDOI].
397 Tanaka, T., Tagoshi, H. and Sasaki, M., “Gravitational Waves by a Particle in Circular Orbit around a Schwarzschild Black Hole: 5.5 Post-Newtonian Formula”, Prog. Theor. Phys., 96, 1087–1101 (1996). [External LinkDOI], [External Linkgr-qc/9701050].
398 Taylor, J. H., “Pulsar timing and relativistic gravity”, Class. Quantum Grav., 10, 167–174 (1993). [External LinkDOI].
399 Taylor, J. H., Fowler, L. A. and McCulloch, P. M., “Measurements of general relativistic effects in the binary pulsar PSR 1913+16”, Nature, 277, 437–440 (1979). [External LinkDOI].
400 Taylor, J. H. and Weisberg, J. M., “A New Test of General Relativity: Gravitational Radiation and the Binary Pulsar PSR 1913+16”, Astrophys. J., 253, 908–920 (1982). [External LinkDOI].
401 Tessmer, M. and Schäfer, G., “Full-analytic frequency-domain 1PN-accurate gravitational wave forms from eccentric compact binaries”, Phys. Rev. D, 82, 124064 (2010). [External LinkDOI], [External LinkarXiv:1006.3714 [gr-qc]].
402 Tessmer, M. and Schäfer, G., “Full-analytic frequency-domain gravitational wave forms from eccentric compact binaries to 2PN accuracy”, Ann. Phys. (Berlin), 523, 813 (2011). [External LinkDOI], [External LinkarXiv:1012.3894 [gr-qc]].
403 Thorne, K. S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299–339 (1980). [External LinkDOI], [External LinkADS].
404 Thorne, K. S., “The theory of gravitational radiation: An introductory review”, in Deruelle, N. and Piran, T., eds., Gravitational Radiation, NATO Advanced Study Institute, Centre de physique des Houches, 2 – 21 June 1982, pp. 1–57, (North-Holland; Elsevier, Amsterdam; New York, 1983).
405 Thorne, K. S., “Gravitational radiation”, in Hawking, S. W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 330–458, (Cambridge University Press, Cambridge; New York, 1987). [External LinkGoogle Books].
406 Thorne, K. S., “Gravitational-wave bursts with memory: The Christodoulou effect”, Phys. Rev. D, 45, 520 (1992). [External LinkDOI].
407 Thorne, K. S. and Hartle, J. B., “Laws of motion and precession for black holes and other bodies”, Phys. Rev. D, 31, 1815–1837 (1985). [External LinkDOI].
408 Thorne, K. S. and Kovàcs, S. J., “Generation of gravitational waves. I. Weak-field sources”, Astrophys. J., 200, 245–262 (1975). [External LinkDOI].
409 Trautman, A., “Lectures on General Relativity”, Gen. Relativ. Gravit., 34, 721–762 (2002). [External LinkDOI]. Lectures delivered at King’s College in London in May – June 1958.
410 Trias, M. and Sintes, A. M., “LISA observations of supermassive black holes: Parameter estimation using full post-Newtonian inspiral waveforms”, Phys. Rev. D, 77, 024030 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.4434 [gr-qc]].
411 Tulczyjew, W., “On the energy-momentum tensor density for simple pole particles”, Bull. Acad. Polon. Sci. Cl. III, 5, 279 (1957).
412 Tulczyjew, W., “Motion of multipole particles in general relativity theory”, Acta Phys. Pol., 18, 37 (1959).
413 Vaidya, V., “Gravitational spin Hamiltonians from the S matrix”, Phys. Rev. D, 91, 024017 (2015). [External LinkDOI], [External LinkarXiv:1410.5348 [hep-th]].
414 Vines, J., Hinderer, T. and Flanagan, É.É., “Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals”, Phys. Rev. D, 83, 084051 (2011). [External LinkDOI], [External LinkarXiv:1101.1673 [gr-qc]].
415 Wagoner, R. V., “Test for Existence of Gravitational Radiation”, Astrophys. J. Lett., 196, L63–L65 (1975). [External LinkDOI].
416 Wagoner, R. V. and Will, C. M., “Post-Newtonian gravitational radiation from orbiting point masses”, Astrophys. J., 210, 764–775 (1976). [External LinkDOI].
417 Wald, R. M., “On perturbations of a Kerr black hole”, J. Math. Phys., 14, 1453–1461 (1973). [External LinkDOI].
418 Walker, M. and Will, C. M., “The approximation of radiative effects in relativistic gravity: Gravitational radiation reaction and energy loss in nearly Newtonian systems”, Astrophys. J. Lett., 242, L129–L133 (1980). [External LinkDOI], [External LinkADS].
419 Wen, L., “On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters”, Astrophys. J., 598, 419 (2003). [External LinkDOI], [External Linkastro-ph/0211492].
420 Wex, N., “The second post-Newtonian motion of compact binary-star systems with spin”, Class. Quantum Grav., 12, 983–1005 (1995). [External LinkDOI].
421 Will, C. M., “Gravitational Waves from Inspiralling Compact Binaries: A Post-Newtonian Approach”, in Sasaki, M., ed., Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial Symposium, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, 28 – 29 October, 1993, NYMSS, 8, pp. 83–98, (Universal Academy Press, Tokyo, 1993). [External Linkgr-qc/9403033].
422 Will, C. M., “Generation of post-Newtonian gravitational radiation via direct integration of the relaxed Einstein equations”, Prog. Theor. Phys. Suppl., 136, 158–167 (1999). [External LinkDOI], [External Linkgr-qc/9910057].
423 Will, C. M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies”, Phys. Rev. D, 71, 084027 (2005). [External LinkDOI], [External Linkgr-qc/0502039].
424 Will, C. M. and Wiseman, A. G., “Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54, 4813–4848 (1996). [External LinkDOI], [External Linkgr-qc/9608012].
425 Wiseman, A. G., “Coalescing binary systems of compact objects to (post)52-Newtonian order. II. Higher-order wave forms and radiation recoil”, Phys. Rev. D, 46, 1517–1539 (1992). [External LinkDOI], [External LinkADS].
426 Wiseman, A. G., “Coalescing binary systems of compact objects to (post)52-Newtonian order. IV. The gravitational wave tail”, Phys. Rev. D, 48, 4757–4770 (1993). [External LinkDOI], [External LinkADS].
427 Wiseman, A. G. and Will, C. M., “Christodoulou’s nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation”, Phys. Rev. D, 44, R2945–R2949 (1991). [External LinkDOI].
428 Zeng, J. and Will, C. M., “Application of energy and angular momentum balance to gravitational radiation reaction for binary systems with spin-orbit coupling”, Gen. Relativ. Gravit., 39, 1661 (2007). [External LinkDOI], [External LinkarXiv:0704.2720].