sidebar

References

1 Aceña, A., Dain, S. and Gabach Clément, M.E., “Horizon area–angular momentum inequality for a class of axially symmetric black holes”, Class. Quantum Grav., 28, 105014 (2011). [External LinkDOI], [External LinkarXiv:1012.2413 [gr-qc]].
2 Ait Moussa, K., Clément, G., Guennoune, H. and Leygnac, C., “Three-dimensional Chern-Simons black holes”, Phys. Rev. D, 78, 064065 (2008). [External LinkDOI], [External LinkarXiv:0807.4241 [gr-qc]].
3 Akyol, M. and Papadopoulos, G., “Topology and geometry of 6-dimensional (1,0) supergravity black hole horizons”, Class. Quantum Grav., 29, 055002 (2012). [External LinkDOI], [External LinkarXiv:1109.4254 [hep-th]].
4 Amsel, A.J., Horowitz, G.T., Marolf, D. and Roberts, M.M., “No Dynamics in the Extremal Kerr Throat”, J. High Energy Phys., 2009(09), 044 (2009). [External LinkDOI], [External LinkarXiv:0906.2376 [hep-th]].
5 Amsel, A.J., Horowitz, G.T., Marolf, D. and Roberts, M.M., “Uniqueness of extremal Kerr and Kerr-Newman black holes”, Phys. Rev. D, 81, 024033 (2010). [External LinkDOI], [External LinkarXiv:0906.2367 [gr-qc]].
6 Aretakis, S., “Stability and Instability of Extreme Reissner–Nordström Black Hole Spacetimes for Linear Scalar Perturbations II”, Ann. Henri Poincare, 12, 1491–1538 (2011). [External LinkDOI], [External LinkarXiv:1110.2009 [gr-qc]].
7 Aretakis, S., “Stability and Instability of Extreme Reissner-Nordström Black Hole Spacetimes for Linear Scalar Perturbations I”, Commun. Math. Phys., 307, 17–63 (2011). [External LinkDOI], [External LinkarXiv:1110.2007 [gr-qc]].
8 Aretakis, S., “Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds”, J. Funct. Anal., 263, 2770–2831 (2012). [External LinkDOI], [External LinkarXiv:1110.2006 [gr-qc]].
9 Aretakis, S., “Horizon Instability of Extremal Black Holes”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1206.6598 [gr-qc]].
10 Aretakis, S., “Nonlinear instability of scalar fields on extremal black holes”, Phys. Rev. D, 87, 084052 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.4616 [gr-qc]].
11 Aretakis, S., “A note on instabilities of extremal black holes under scalar perturbations from afar”, Class. Quantum Grav., 30, 095010 (2013). [External LinkDOI], [External LinkarXiv:1212.1103 [gr-qc]].
12 Astefanesei, D., Goldstein, K., Jena, R.P., Sen, A. and Trivedi, S.P., “Rotating attractors”, J. High Energy Phys., 2006(10), 058 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0606244 [hep-th]].
13 Astefanesei, D., Goldstein, K. and Mahapatra, S., “Moduli and (un)attractor black hole thermodynamics”, Gen. Relativ. Gravit., 40, 2069–2105 (2008). [External LinkDOI], [External LinkarXiv:hep-th/0611140 [hep-th]].
14 Atiyah, M.F. and Bott, R., “The Yang-Mills equations over Riemann surfaces”, Philos. Trans. R. Soc. London, Ser. A, 308, 523–615 (1982). [External LinkDOI].
15 Bañados, M., Teitelboim, C. and Zanelli, J., “Black Hole in Three-Dimensional Spacetime”, Phys. Rev. Lett., 69, 1849–1851 (1992). [External LinkDOI], [External LinkarXiv:hep-th/9204099 [hep-th]].
16 Balasubramanian, V., de Boer, J., Sheikh-Jabbari, M.M. and Simón, J., “What is a chiral 2d CFT? And what does it have to do with extremal black holes?”, J. High Energy Phys., 2010(02), 017 (2010). [External LinkDOI], [External LinkarXiv:0906.3272 [hep-th]].
17 Bardeen, J.M., Carter, B. and Hawking, S.W., “The Four Laws of Black Hole Mechanics”, Commun. Math. Phys., 31, 161–170 (1973). [External LinkDOI], [External LinkADS].
18 Bardeen, J.M. and Horowitz, G.T., “The Extreme Kerr throat geometry: A vacuum analog of AdS2×S2”, Phys. Rev. D, 60, 104030 (1999). [External LinkDOI], [External LinkarXiv:hep-th/9905099 [hep-th]].
19 Bena, I., “Splitting hairs of the three charge black hole”, Phys. Rev. D, 70, 105018 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0404073 [hep-th]].
20 Bena, I. and Kraus, P., “Microscopic description of black rings in AdS/CFT”, J. High Energy Phys., 2004(12), 070 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0408186 [hep-th]].
21 Berkooz, M. and Reichmann, D., “Weakly renormalized near 1/16 SUSY Fermi liquid operators in 𝒩 = 4 SYM”, J. High Energy Phys., 2008(10), 084 (2008). [External LinkDOI], [External LinkarXiv:0807.0559 [hep-th]].
22 Berkooz, M., Reichmann, D. and Simón, J., “A Fermi surface model for large supersymmetric AdS5 black holes”, J. High Energy Phys., 2007(01), 048 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0604023 [hep-th]].
23 Berman, D.S. and Parikh, M.K., “Holography and rotating AdS black holes”, Phys. Lett. B, 463, 168–173 (1999). [External LinkDOI], [External LinkarXiv:hep-th/9907003 [hep-th]].
24 Besse, A.L., Einstein Manifolds, (Springer, Berlin; Heidelberg, 1987). [External LinkDOI], [External LinkGoogle Books].
25 Bičák, J., Cris, C., Hájíček, P. and Higuchi, A., “Gauge symmetry breakdown at the horizon of extreme black holes”, Class. Quantum Grav., 12, 479–498 (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9406009 [gr-qc]].
26 Bizoń, P. and Friedrich, H., “A remark about wave equations on the extreme Reissner–Nordström black hole exterior”, Class. Quantum Grav., 30, 065001 (2013). [External LinkDOI], [External LinkarXiv:1212.0729 [gr-qc]].
27 Bizoń, P. and Rostworowski, A., “On weakly turbulent instability of anti-de Sitter space”, Phys. Rev. Lett., 107, 031102 (2011). [External LinkDOI], [External LinkarXiv:1104.3702 [gr-qc]].
28 Booth, I., “Spacetime near isolated and dynamical trapping horizons”, Phys. Rev. D, 87, 024008 (2013). [External LinkDOI], [External LinkarXiv:1207.6955 [gr-qc]].
29 Booth, I. and Liko, T., “Supersymmetric isolated horizons in ADS spacetime”, Phys. Lett. B, 670, 61–66 (2008). [External LinkDOI], [External LinkarXiv:0808.0905 [gr-qc]].
30 Breckenridge, J.C., Myers, R.C., Peet, A.W. and Vafa, C., “D-branes and spinning black holes”, Phys. Lett. B, 391, 93–98 (1997). [External LinkDOI], [External LinkarXiv:hep-th/9602065 [hep-th]].
31 Bredberg, I., Keeler, C., Lysov, V. and Strominger, A., “Lectures on the Kerr/CFT Correspondence”, Nucl. Phys. B (Proc. Suppl.), 216, 194–210 (2011). [External LinkDOI], [External LinkarXiv:1103.2355 [hep-th]].
32 Brown, J.D. and Henneaux, M., “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity”, Commun. Math. Phys., 104, 207–226 (1986). [External LinkDOI].
33 Candlish, G.N. and Reall, H.S., “On the smoothness of static multi-black hole solutions of higher-dimensional Einstein-Maxwell theory”, Class. Quantum Grav., 24, 6025–6040 (2007). [External LinkDOI], [External LinkarXiv:0707.4420 [gr-qc]].
34 Cardoso, V. and Dias, Ó.J.C., “Small Kerr-anti-de Sitter black holes are unstable”, Phys. Rev. D, 70, 084011 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0405006 [hep-th]].
35 Cardoso, V., Dias, Ó.J.C. and Yoshida, S., “Classical instability of Kerr-AdS black holes and the issue of final state”, Phys. Rev. D, 74, 044008 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0607162 [hep-th]].
36 Chang, C.-M. and Yin, X., “1/16 BPS States in 𝒩 = 4 SYM”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1305.6314 [hep-th]].
37 Chen, D., “Examples of Einstein manifolds in odd dimensions”, Ann. Glob. Anal. Geom., 40, 339–377 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1103.0817 [math.DG]].
38 Chong, Z.-W., Cvetič, M., Lü, H. and Pope, C.N., “General Nonextremal Rotating Black Holes in Minimal Five-Dimensional Gauged Supergravity”, Phys. Rev. Lett., 95, 161301 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0506029 [hep-th]].
39 Chruściel, P.T., Lopes Costa, J. and Heusler, M., “Stationary Black Holes: Uniqueness and Beyond”, Living Rev. Relativity, 15, lrr-2012-7 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.6112 [gr-qc]]. URL (accessed 18 June 2013):
http://www.livingreviews.org/lrr-2012-7.
40 Chruściel, P.T. and Nguyen, L., “A Uniqueness Theorem for Degenerate Kerr–Newman Black Holes”, Ann. Henri Poincare, 11, 585–609 (2010). [External LinkDOI], [External LinkarXiv:1002.1737 [gr-qc]].
41 Chruściel, P.T., Reall, H.S. and Tod, P., “On Israel–Wilson–Perjés black holes”, Class. Quantum Grav., 23, 2519–2540 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0512116 [gr-qc]].
42 Chruściel, P.T., Reall, H.S. and Tod, P., “On non-existence of static vacuum black holes with degenerate components of the event horizon”, Class. Quantum Grav., 23, 549–554 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0512041].
43 Chruściel, P.T. and Tod, P., “The Classification of Static Electro-Vacuum Space-Times Containing an Asymptotically Flat Spacelike Hypersurface with Compact Interior”, Commun. Math. Phys., 271, 577–589 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0512043].
44 Chruściel, P.T. and Wald, R.M., “On the topology of stationary black holes”, Class. Quantum Grav., 11, L147–L152 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9410004 [gr-qc]].
45 Clément, G., “Classical solutions in three-dimensional Einstein–Maxwell cosmological gravity”, Class. Quantum Grav., 10, L49–L54 (1993). [External LinkDOI].
46 Clément, G., “Spinning charged BTZ black holes and self-dual particle-like solutions”, Phys. Lett. B, 367, 70–74 (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9510025 [gr-qc]].
47 Coley, A., Milson, R., Pravda, V. and Pravdova, A., “Classification of the Weyl tensor in higher dimensions”, Class. Quantum Grav., 21, L35–L42 (2004). [External LinkarXiv:gr-qc/0401008 [gr-qc]].
48 Compère, G., “The Kerr/CFT Correspondence and its Extensions”, Living Rev. Relativity, 15, lrr-2012-11 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1203.3561 [hep-th]]. URL (accessed 18 June 2013):
http://www.livingreviews.org/lrr-2012-11.
49 Compère, G., de Buyl, S., Stotyn, S. and Virmani, A., “A general black string and its microscopics”, J. High Energy Phys., 2010(11), 133 (2010). [External LinkDOI], [External LinkarXiv:1006.5464 [hep-th]].
50 Cvetič, M. and Youm, D., “General rotating five-dimensional black holes of toroidally compactified heterotic string”, Nucl. Phys. B, 476, 118–132 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9603100 [hep-th]].
51 Cyrier, M., Guica, M., Mateos, D. and Strominger, A., “Microscopic entropy of the black ring”, Phys. Rev. Lett., 94, 191601 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0411187 [hep-th]].
52 Dabholkar, A., Sen, A. and Trivedi, S.P., “Black hole microstates and attractor without supersymmetry”, J. High Energy Phys., 2007(01), 096 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0611143 [hep-th]].
53 Dain, S., “Geometric inequalities for axially symmetric black holes”, Class. Quantum Grav., 29, 073001 (2012). [External LinkDOI], [External LinkarXiv:1111.3615 [gr-qc]].
54 Dain, S. and Dotti, G., “The wave equation on the extreme Reissner-Nordström black hole”, Class. Quantum Grav., 30, 055011 (2013). [External LinkDOI], [External LinkarXiv:1209.0213 [gr-qc]].
55 Dain, S. and Reiris, M., “Area–Angular-Momentum Inequality for Axisymmetric Black Holes”, Phys. Rev. Lett., 107, 051101 (2011). [External LinkDOI], [External LinkarXiv:1102.5215 [gr-qc]].
56 David, J.R., Mandal, G. and Wadia, S.R., “Microscopic formulation of black holes in string theory”, Phys. Rep., 369, 549–686 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0203048 [hep-th]].
57 Dias, Ó.J.C., Figueras, P., Monteiro, R., Reall, H.S. and Santos, J.E., “An instability of higher-dimensional rotating black holes”, J. High Energy Phys., 2010(05), 076 (2010). [External LinkDOI], [External LinkarXiv:1001.4527 [hep-th]].
58 Dias, Ó.J.C., Horowitz, G.T. and Santos, J.E., “Black holes with only one Killing field”, J. High Energy Phys., 2011(07), 115 (2011). [External LinkDOI], [External LinkarXiv:1105.4167 [hep-th]].
59 Dias, Ó.J.C., Monteiro, R., Reall, H.S. and Santos, J.E., “A Scalar field condensation instability of rotating anti-de Sitter black holes”, J. High Energy Phys., 2010(11), 036 (2010). [External LinkDOI], [External LinkarXiv:1007.3745 [hep-th]].
60 Dias, Ó.J.C., Reall, H.S. and Santos, J.E., “Kerr-CFT and gravitational perturbations”, J. High Energy Phys., 2009(08), 101 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.2380 [hep-th]].
61 Dias, Ó.J.C., Santos, J.E. and Stein, M., “Kerr-AdS and its Near-horizon Geometry: Perturbations and the Kerr/CFT Correspondence”, J. High Energy Phys., 2012(10), 182 (2012). [External LinkDOI], [External LinkarXiv:1208.3322 [hep-th]].
62 Durkee, M.N. and Reall, H.S., “Perturbations of near-horizon geometries and instabilities of Myers-Perry black holes”, Phys. Rev. D, 83, 104044 (2011). [External LinkDOI], [External LinkarXiv:1012.4805 [hep-th]].
63 Elvang, H., Emparan, R. and Figueras, P., “Non-supersymmetric black rings as thermally excited supertubes”, J. High Energy Phys., 2005(02), 031 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0412130 [hep-th]].
64 Elvang, H., Emparan, R., Mateos, D. and Reall, H.S., “A Supersymmetric Black Ring”, Phys. Rev. Lett., 93, 211302 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0407065 [hep-th]].
65 Elvang, H., Emparan, R., Mateos, D. and Reall, H.S., “Supersymmetric 4D rotating black holes from 5D black rings”, J. High Energy Phys., 2005(08), 042 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0504125 [hep-th]].
66 Elvang, H., Emparan, R., Mateos, D. and Reall, H.S., “Supersymmetric black rings and three-charge supertubes”, Phys. Rev. D, 71, 024033 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0408120 [hep-th]].
67 Elvang, H. and Figueras, P., “Black Saturn”, J. High Energy Phys., 2007(05), 050 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0701035 [hep-th]].
68 Emparan, R., “Tubular branes in fluxbranes”, Nucl. Phys. B, 610, 169–189 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0105062 [hep-th]].
69 Emparan, R., “Rotating circular strings, and infinite nonuniqueness of black rings”, J. High Energy Phys., 2004(03), 064 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0402149 [hep-th]].
70 Emparan, R., “Effective theory for black branes”, Prog. Theor. Phys. Suppl., 190, 247–260 (2011). [External LinkDOI].
71 Emparan, R. and Horowitz, G.T., “Microstates of a Neutral Black Hole in M Theory”, Phys. Rev. Lett., 97, 141601 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0607023 [hep-th]].
72 Emparan, R. and Reall, H.S., “Generalized Weyl solutions”, Phys. Rev. D, 65, 084025 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0110258 [hep-th]].
73 Emparan, R. and Reall, H.S., “A Rotating Black Ring Solution in Five Dimensions”, Phys. Rev. Lett., 88, 101101 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0110260 [hep-th]].
74 Emparan, R. and Reall, H.S., “Black rings”, Class. Quantum Grav., 23, R169–R197 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0608012 [hep-th]].
75 Emparan, R. and Reall, H.S., “Black Holes in Higher Dimensions”, Living Rev. Relativity, 11, lrr-2008-6 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0801.3471 [hep-th]]. URL (accessed 18 June 2013):
http://www.livingreviews.org/lrr-2008-6.
76 Faulkner, T., Liu, H., McGreevy, J. and Vegh, D., “Emergent quantum criticality, Fermi surfaces, and AdS2”, Phys. Rev. D, 83, 125002 (2011). [External LinkDOI], [External LinkarXiv:0907.2694 [hep-th]].
77 Ferrara, S. and Kallosh, R., “Supersymmetry and attractors”, Phys. Rev. D, 54, 1514–1524 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9602136 [hep-th]].
78 Ferrara, S., Kallosh, R. and Strominger, A., “N = 2 extremal black holes”, Phys. Rev. D, 52, 5412–5416 (1995). [External LinkDOI], [External LinkarXiv:hep-th/9508072 [hep-th]].
79 Figueras, P., Kunduri, H.K., Lucietti, J. and Rangamani, M., “Extremal vacuum black holes in higher dimensions”, Phys. Rev. D, 78, 044042 (2008). [External LinkDOI], [External LinkarXiv:0803.2998 [hep-th]].
80 Figueras, P. and Lucietti, J., “On the uniqueness of extremal vacuum black holes”, Class. Quantum Grav., 27, 095001 (2010). [External LinkDOI], [External LinkarXiv:0906.5565 [hep-th]].
81 Figueras, P., Lucietti, J. and Wiseman, T., “Ricci solitons, Ricci flow, and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua”, Class. Quantum Grav., 28, 215018 (2011). [External LinkDOI], [External LinkarXiv:1104.4489 [hep-th]].
82 Figueras, P. and Tunyasuvunakool, S., “CFT’s in rotating black hole backgrounds”, Class. Quantum Grav., 30, 125015 (2013). [External LinkDOI], [External LinkarXiv:1304.1162 [hep-th]].
83 Figueras, P. and Wiseman, T., “Gravity and large black holes in Randall-Sundrum II braneworlds”, Phys. Rev. Lett., 107, 081101 (2011). [External LinkDOI], [External LinkarXiv:1105.2558 [hep-th]].
84 Fischetti, S. and Santos, J.E., “Rotating Black Droplet”, J. High Energy Phys., 2013(07), 156 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.1156 [hep-th]].
85 Friedman, J.L., Schleich, K. and Witt, D.M., “Topological Censorship”, Phys. Rev. Lett., 71, 1486–1489 (1993). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9305017 [gr-qc]].
86 Friedrich, H., Rácz, I. and Wald, R.M., “On the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon”, Commun. Math. Phys., 204, 691–707 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9811021 [gr-qc]].
87 Gabach Clément, M.E., Jaramillo, J.L. and Reiris, M., “Proof of the area-angular momentum-charge inequality for axisymmetric black holes”, Class. Quantum Grav., 30, 065017 (2013). [External LinkDOI], [External LinkarXiv:1207.6761 [gr-qc]].
88 Galloway, G.J., “Rigidity of marginally trapped surfaces and the topology of black holes”, arXiv, e-print, (2006). [External LinkADS], [External LinkarXiv:gr-qc/0608118].
89 Galloway, G.J., “Constraints on the topology of higher-dimensional black holes”, in Horowitz, G.T., ed., Black Holes in Higher Dimensions, pp. 159–179, (Cambridge University Press, Cambridge; New York, 2012). [External LinkADS], [External LinkarXiv:1111.5356 [gr-qc]], [External LinkGoogle Books].
90 Galloway, G.J., Schleich, K., Witt, D.M. and Woolgar, E., “Topological censorship and higher genus black holes”, Phys. Rev. D, 60, 104039 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9902061 [gr-qc]].
91 Galloway, G.J. and Schoen, R., “A generalization of Hawking’s black hole topology theorem to higher dimensions”, Commun. Math. Phys., 266, 571–576 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509107 [gr-qc]].
92 Gauntlett, J.P. and Gutowski, J.B., “Supersymmetric solutions of minimal gauged supergravity in five dimensions”, Phys. Rev. D, 68, 105009 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0304064 [hep-th]].
93 Gauntlett, J.P., Gutowski, J.B., Hull, C.M., Pakis, S. and Reall, H.S., “All supersymmetric solutions of minimal supergravity in five dimensions”, Class. Quantum Grav., 20, 4587–4634 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0209114 [hep-th]].
94 Gauntlett, J.P., Martelli, D., Sparks, J.F. and Waldram, D., “A new infinite class of Sasaki-Einstein manifolds”, Adv. Theor. Math. Phys., 8, 987–1000 (2006). [External LinkarXiv:hep-th/0403038 [hep-th]].
95 Gibbons, G.W., “Some comments on gravitational entropy and the inverse mean curvature flow”, Class. Quantum Grav., 16, 1677–1687 (1999). [External LinkDOI], [External LinkarXiv:hep-th/9809167 [hep-th]].
96 Gibbons, G.W., Ida, D. and Shiromizu, T., “Uniqueness and Non-Uniqueness of Static Black Holes in Higher Dimensions”, Phys. Rev. Lett., 89, 041101 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0206049 [hep-th]].
97 Gibbons, G.W., Ida, D. and Shiromizu, T., “Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions”, Phys. Rev. D, 66, 044010 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0206136 [hep-th]].
98 Gibbons, G.W., Ida, D. and Shiromizu, T., “Uniqueness and Non-Uniqueness of Static Vacuum Black Holes in Higher Dimensions”, Prog. Theor. Phys. Suppl., 148, 284–290 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0203004 [gr-qc]].
99 Gibbons, G.W., Lü, H., Page, D.N. and Pope, C.N., “Rotating black holes in higher dimensions with a cosmological constant”, Phys. Rev. Lett., 93, 171102 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0409155 [hep-th]].
100 Goldstein, K., Iizuka, N., Jena, R.P. and Trivedi, S.P., “Non-supersymmetric attractors”, Phys. Rev. D, 72, 124021 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0507096 [hep-th]].
101 Gran, U., Gutowski, J.B. and Papadopoulos, G., “IIB black hole horizons with five-form flux and extended supersymmetry”, J. High Energy Phys., 2011(09), 047 (2011). [External LinkDOI], [External LinkarXiv:1104.2908 [hep-th]].
102 Gran, U., Gutowski, J.B. and Papadopoulos, G., “IIB black hole horizons with five-form flux and KT geometry”, J. High Energy Phys., 2011(05), 050 (2011). [External LinkDOI], [External LinkarXiv:1101.1247 [hep-th]].
103 Gran, U., Gutowski, J.B. and Papadopoulos, G., “IIB horizons”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1304.6539 [hep-th]].
104 Gran, U., Gutowski, J.B. and Papadopoulos, G., “Index theory and dynamical symmetry enhancement near IIB horizons”, arXiv, e-print, (2013). [External LinkarXiv:1306.5765 [hep-th]].
105 Grover, J., Gutowski, J.B., Papadopoulos, G. and Sabra, W.A., “Index Theory and Supersymmetry of 5D Horizons”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1303.0853 [hep-th]].
106 Grover, J., Gutowski, J.B. and Sabra, W.A., “Supersymmetric AdS Black Rings”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1306.0017 [hep-th]].
107 Gubser, S.S., “Breaking an Abelian gauge symmetry near a black hole horizon”, Phys. Rev. D, 78, 065034 (2008). [External LinkDOI], [External LinkarXiv:0801.2977 [hep-th]].
108 Gubser, S.S., Klebanov, I.R. and Peet, A.W., “Entropy and temperature of black 3-branes”, Phys. Rev. D, 54, 3915–3919 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9602135 [hep-th]].
109 Gubser, S.S., Klebanov, I.R. and Polyakov, A.M., “Gauge theory correlators from non-critical string theory”, Phys. Lett. B, 428, 105–114 (1998). [External LinkDOI], [External LinkarXiv:hep-th/9802109 [hep-th]].
110 Guica, M., Hartman, T., Song, W. and Strominger, A., “The Kerr/CFT Correspondence”, Phys. Rev. D, 80, 124008 (2009). [External LinkDOI], [External LinkarXiv:0809.4266 [hep-th]].
111 Gutowski, J.B., “Uniqueness of five-dimensional supersymmetric black holes”, J. High Energy Phys., 2004(08), 049 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0404079 [hep-th]].
112 Gutowski, J.B., Martelli, D. and Reall, H.S., “All supersymmetric solutions of minimal supergravity in six dimensions”, Class. Quantum Grav., 20, 5049–5078 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0306235 [hep-th]].
113 Gutowski, J.B. and Papadopoulos, G., “Heterotic Black Horizons”, J. High Energy Phys., 2010(07), 011 (2010). [External LinkDOI], [External LinkarXiv:0912.3472 [hep-th]].
114 Gutowski, J.B. and Papadopoulos, G., “Heterotic horizons, Monge-Ampère equation and del Pezzo surfaces”, J. High Energy Phys., 2010(10), 084 (2010). [External LinkDOI], [External LinkarXiv:1003.2864 [hep-th]].
115 Gutowski, J.B. and Papadopoulos, G., “Topology of supersymmetric 𝒩 = 1, D = 4 supergravity horizons”, J. High Energy Phys., 2010(11), 114 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1006.4369 [hep-th]].
116 Gutowski, J.B. and Papadopoulos, G., “M-Horizons”, J. High Energy Phys., 2012(12), 100 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1207.7086 [hep-th]].
117 Gutowski, J.B. and Papadopoulos, G., “Static M-horizons”, J. High Energy Phys., 2012(01), 005 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.3085 [hep-th]].
118 Gutowski, J.B. and Papadopoulos, G., “Index theory and dynamical symmetry enhancement of M-horizons”, J. High Energy Phys., 2013(05), 088 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1303.0869 [hep-th]].
119 Gutowski, J.B. and Reall, H.S., “General supersymmetric AdS5 black holes”, J. High Energy Phys., 2004(04), 048 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0401129 [hep-th]].
120 Gutowski, J.B. and Reall, H.S., “Supersymmetric AdS5 black holes”, J. High Energy Phys., 2004(02), 006 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0401042 [hep-th]].
121 Gutowski, J.B. and Sabra, W.A., “Enhanced Horizons”, Class. Quantum Grav., 27, 235011 (2010). [External LinkDOI], [External LinkarXiv:0807.4714 [hep-th]].
122 Hájíček, P., “Three remarks on axisymmetric stationary horizons”, Commun. Math. Phys., 36, 305–320 (1974). [External LinkDOI], [External LinkADS].
123 Hanaki, K., Ohashi, K. and Tachikawa, Y., “Comments on charges and near-horizon data of black rings”, J. High Energy Phys., 2007(12), 057 (2007). [External LinkDOI], [External LinkarXiv:0704.1819 [hep-th]].
124 Harmark, T., “Stationary and axisymmetric solutions of higher-dimensional general relativity”, Phys. Rev. D, 70, 124002 (2004). [External LinkDOI], [External LinkarXiv:hep-th/0408141 [hep-th]].
125 Hartnoll, S.A., Herzog, C.P. and Horowitz, G.T., “Building a Holographic Superconductor”, Phys. Rev. Lett., 101, 031601 (2008). [External LinkDOI], [External LinkarXiv:0803.3295 [hep-th]].
126 Hashimoto, Y., Sakaguchi, M. and Yasui, Y., “New infinite series of Einstein metrics on sphere bundles from AdS black holes”, Commun. Math. Phys., 257, 273–285 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0402199 [hep-th]].
127 Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152–166 (1972). [External LinkDOI].
128 Hawking, S.W., “Particle Creation by Black Holes”, Commun. Math. Phys., 43, 199–220 (1975). [External LinkDOI], [External LinkADS].
129 Hawking, S.W., Hunter, C.J. and Taylor-Robinson, M.M., “Rotation and the AdS-CFT correspondence”, Phys. Rev. D, 59, 064005 (1999). [External LinkDOI], [External LinkarXiv:hep-th/9811056 [hep-th]].
130 Hawking, S.W. and Reall, H.S., “Charged and rotating AdS black holes and their CFT duals”, Phys. Rev. D, 61, 024014 (2000). [External LinkDOI], [External LinkarXiv:hep-th/9908109 [hep-th]].
131 Holland, J., “Non-existence of toroidal cohomogeneity-1 near horizon geometries”, arXiv, e-print, (2010). [External LinkADS], [External LinkarXiv:1008.0520 [gr-qc]].
132 Hollands, S., “Horizon area-angular momentum inequality in higher dimensional spacetimes”, Class. Quantum Grav., 29, 065006 (2012). [External LinkDOI], [External LinkarXiv:1110.5814 [gr-qc]].
133 Hollands, S., Holland, J. and Ishibashi, A., “Further restrictions on the topology of stationary black holes in five dimensions”, Ann. Henri Poincare, 12, 279–301 (2011). [External LinkDOI], [External LinkarXiv:1002.0490 [gr-qc]].
134 Hollands, S. and Ishibashi, A., “On the ‘Stationary Implies Axisymmetric’ Theorem for Extremal Black Holes in Higher Dimensions”, Commun. Math. Phys., 291, 403–441 (2009). [External LinkDOI], [External LinkarXiv:0809.2659 [gr-qc]].
135 Hollands, S. and Ishibashi, A., “All vacuum near horizon geometries in arbitrary dimensions”, Ann. Henri Poincare, 10, 1537–1557 (2010). [External LinkDOI], [External LinkarXiv:0909.3462 [gr-qc]].
136 Hollands, S. and Ishibashi, A., “Black hole uniqueness theorems in higher dimensional spacetimes”, Class. Quantum Grav., 29, 163001 (2012). [External LinkDOI], [External LinkarXiv:1206.1164 [gr-qc]].
137 Hollands, S., Ishibashi, A. and Wald, R.M., “A higher dimensional stationary rotating black hole must be axisymmetric”, Commun. Math. Phys., 271, 699–722 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0605106 [gr-qc]].
138 Hollands, S. and Yazadjiev, S.S., “Uniqueness theorem for 5-dimensional black holes with two axial Killing fields”, Commun. Math. Phys., 283, 749–768 (2008). [External LinkDOI], [External LinkarXiv:0707.2775 [gr-qc]].
139 Hollands, S. and Yazadjiev, S.S., “A Uniqueness Theorem for Stationary Kaluza-Klein Black Holes”, Commun. Math. Phys., 302, 631–674 (2011). [External LinkDOI], [External LinkarXiv:0812.3036 [gr-qc]].
140 Horowitz, G.T. and Roberts, M.M., “Counting the Microstates of a Kerr Black Hole”, Phys. Rev. Lett., 99, 221601 (2007). [External LinkDOI], [External LinkarXiv:0708.1346 [hep-th]].
141 Horowitz, G.T. and Wiseman, T., “General black holes in Kaluza–Klein theory”, in Horowitz, G.T., ed., Black Holes in Higher Dimensions, pp. 69–97, (Cambridge University Press, Cambridge; New York, 2012). [External LinkADS], [External LinkarXiv:1107.5563 [gr-qc]], [External LinkGoogle Books].
142 Jaramillo, J.L., “A note on degeneracy, marginal stability and extremality of black hole horizons”, Class. Quantum Grav., 29, 177001 (2012). [External LinkDOI], [External LinkarXiv:1206.1271 [gr-qc]].
143 Jaramillo, J.L., Reiris, M. and Dain, S., “Black hole area–angular-momentum inequality in non-vacuum spacetimes”, Phys. Rev. D, 84, 121503 (2011). [External LinkDOI], [External LinkarXiv:1106.3743 [gr-qc]].
144 Jezierski, J., “On the existence of Kundt’s metrics with compact sections of null hypersurfaces”, in Kunze, K.E., Mars, M. and Vázquez-Mozo, M.A., eds., Physics and Mathematics of Gravitation, Proceedings of the Spanish Relativity Meeting 2008, Salamanca, Spain, 15 – 19 September 2008, AIP Conference Proceedings, 1122, pp. 312–315, (American Institute of Physics, Melville, NY, 2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.0518 [gr-qc]].
145 Jezierski, J. and Kamiński, B., “Towards uniqueness of degenerate axially symmetric Killing horizon”, Gen. Relativ. Gravit., 45, 987–1004 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1206.5136 [gr-qc]].
146 Johnstone, M., Sheikh-Jabbari, M.M., Simón, J. and Yavartanoo, H., “Extremal Black Holes and First Law of Thermodynamics”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1305.3157 [hep-th]].
147 Kaus, A. and Reall, H.S., “Charged Randall-Sundrum black holes and N = 4 super Yang-Mills in AdS2 × S2”, J. High Energy Phys., 2009(05), 032 (2009). [External LinkDOI], [External LinkarXiv:0901.4236 [hep-th]].
148 Kim, S. and Lee, K.-M., “1/16-BPS black holes and giant gravitons in the AdS5 × S5 Space”, J. High Energy Phys., 2006(12), 077 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0607085 [hep-th]].
149 Kinney, J., Maldacena, J.M., Minwalla, S. and Raju, S., “An Index for 4 Dimensional Super Conformal Theories”, Commun. Math. Phys., 275, 209–254 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0510251 [hep-th]].
150 Kostelecký, V.A. and Perry, M.J., “Solitonic black holes in gauged N = 2 supergravity”, Phys. Lett. B, 371, 191–198 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9512222 [hep-th]].
151 Kunduri, H.K. and Lucietti, J., “Near-horizon geometries of supersymmetric AdS5 black holes”, J. High Energy Phys., 2007(12), 015 (2007). [External LinkDOI], [External LinkarXiv:0708.3695 [hep-th]].
152 Kunduri, H.K. and Lucietti, J., “A classification of near-horizon geometries of extremal vacuum black holes”, J. Math. Phys., 50, 082502 (2009). [External LinkDOI], [External LinkarXiv:0806.2051 [hep-th]].
153 Kunduri, H.K. and Lucietti, J., “Static near-horizon geometries in five dimensions”, Class. Quantum Grav., 26, 245010 (2009). [External LinkDOI], [External LinkarXiv:0907.0410 [hep-th]].
154 Kunduri, H.K. and Lucietti, J., “Uniqueness of near-horizon geometries of rotating extremal AdS4 black holes”, Class. Quantum Grav., 26, 055019 (2009). [External LinkDOI], [External LinkarXiv:0812.1576 [hep-th]].
155 Kunduri, H.K. and Lucietti, J., “Constructing near-horizon geometries in supergravities with hidden symmetry”, J. High Energy Phys., 2011(07), 107 (2011). [External LinkDOI], [External LinkarXiv:1104.2260 [hep-th]].
156 Kunduri, H.K. and Lucietti, J., “An infinite class of extremal horizons in higher dimensions”, Commun. Math. Phys., 303, 31–71 (2011). [External LinkDOI], [External LinkarXiv:1002.4656 [hep-th]].
157 Kunduri, H.K. and Lucietti, J., “Degenerate horizons, Einstein metrics, and Lens space bundles”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1210.1268 [hep-th]].
158 Kunduri, H.K. and Lucietti, J., “Extremal Sasakian horizons”, Phys. Lett. B, 713, 308–312 (2012). [External LinkDOI], [External LinkarXiv:1204.5149 [hep-th]].
159 Kunduri, H.K., Lucietti, J. and Reall, H.S., “Gravitational perturbations of higher dimensional rotating black holes: Tensor perturbations”, Phys. Rev. D, 74, 084021 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0606076 [hep-th]].
160 Kunduri, H.K., Lucietti, J. and Reall, H.S., “Supersymmetric multi-charge AdS5 black holes”, J. High Energy Phys., 2006(04), 036 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0601156 [hep-th]].
161 Kunduri, H.K., Lucietti, J. and Reall, H.S., “Do supersymmetric anti-de Sitter black rings exist?”, J. High Energy Phys., 2007(02), 026 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0611351 [hep-th]].
162 Kunduri, H.K., Lucietti, J. and Reall, H.S., “Near-horizon symmetries of extremal black holes”, Class. Quantum Grav., 24, 4169–4190 (2007). [External LinkDOI], [External LinkarXiv:0705.4214 [hep-th]].
163 Lewandowski, J. and Pawlowski, T., “Extremal isolated horizons: A local uniqueness theorem”, Class. Quantum Grav., 20, 587–606 (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0208032 [gr-qc]].
164 Li, C. and Lucietti, J., “Uniqueness of extreme horizons in Einstein-Yang-Mills theory”, Class. Quantum Grav., 30, 095017 (2013). [External LinkDOI], [External LinkarXiv:1302.4616 [hep-th]].
165 Lü, H., Mei, J. and Pope, C.N., “Kerr-AdS/CFT correspondence in diverse dimensions”, J. High Energy Phys., 2009(04), 054 (2009). [External LinkDOI], [External LinkarXiv:0811.2225 [hep-th]].
166 Lucietti, J., “Two remarks on near-horizon geometries”, Class. Quantum Grav., 29, 235014 (2012). [External LinkDOI], [External LinkarXiv:1209.4042 [gr-qc]].
167 Lucietti, J., Murata, K., Reall, H.S. and Tanahashi, N., “On the horizon instability of an extreme Reissner-Nordström black hole”, J. High Energy Phys., 2013(03), 035 (2013). [External LinkDOI], [External LinkarXiv:1212.2557 [gr-qc]].
168 Lucietti, J. and Reall, H.S., “Gravitational instability of an extreme Kerr black hole”, Phys. Rev. D, 86, 104030 (2012). [External LinkDOI], [External LinkarXiv:1208.1437 [gr-qc]].
169 Maldacena, J.M., “The large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2, 231–252 (1998). [External LinkarXiv:hep-th/9711200 [hep-th]].
170 Maldacena, J.M., Michelson, J. and Strominger, A., “Anti-de Sitter fragmentation”, J. High Energy Phys., 1999(02), 011 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/9812073 [hep-th]].
171 Maldacena, J.M. and Strominger, A., “Statistical Entropy of Four-Dimensional Extremal Black Holes”, Phys. Rev. Lett., 77, 428–429 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9603060 [hep-th]].
172 Mars, M., “Stability of MOTS in totally geodesic null horizons”, Class. Quantum Grav., 29, 145019 (2012). [External LinkDOI], [External LinkarXiv:1205.1724 [gr-qc]].
173 Martelli, D., Passias, A. and Sparks, J., “The supersymmetric NUTs and bolts of holography”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1212.4618 [hep-th]].
174 Martínez, C., Teitelboim, C. and Zanelli, J., “Charged rotating black hole in three space-time dimensions”, Phys. Rev. D, 61, 104013 (2000). [External LinkDOI], [External LinkarXiv:hep-th/9912259 [hep-th]].
175 Matyjasek, J. and Zaslavskii, O.B., “Extremal limit for charged and rotating (2+1)-dimensional black holes and Bertotti–Robinson geometry”, Class. Quantum Grav., 21, 4283 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0404090 [gr-qc]].
176 Meessen, P. and Ortin, T., “Ultracold spherical horizons in gauged N = 1, d = 4 supergravity”, Phys. Lett. B, 693, 358–361 (2010). [External LinkDOI], [External LinkarXiv:1007.3917 [hep-th]].
177 Meinel, R., “Constructive proof of the Kerr-Newman black hole uniqueness including the extreme case”, Class. Quantum Grav., 29, 035004 (2012). [External LinkDOI], [External LinkarXiv:1108.4854 [gr-qc]].
178 Meinel, R., Ansorg, M., Kleinwächter, A., Neugebauer, G. and Petroff, D., “The Kerr metric as the solution to a boundary value problem”, in Relativistic Figures of Equilibrium, pp. 108–113, (Cambridge University Press, Cambridge; New York, 2008).
179 Moncrief, V. and Isenberg, J., “Symmetries of Cosmological Cauchy Horizons”, Commun. Math. Phys., 89, 387–413 (1983). [External LinkDOI], [External LinkADS].
180 Moncrief, V. and Isenberg, J., “Symmetries of higher dimensional black holes”, Class. Quantum Grav., 25, 195015 (2008). [External LinkDOI], [External LinkarXiv:0805.1451 [gr-qc]].
181 Murata, K., “Conformal weights in the Kerr/CFT correspondence”, J. High Energy Phys., 2011(05), 117 (2011). [External LinkDOI], [External LinkarXiv:1103.5635 [hep-th]].
182 Murata, K., “Instability of higher dimensional extreme black holes”, Class. Quantum Grav., 30, 075002 (2013). [External LinkDOI], [External LinkarXiv:1211.6903 [gr-qc]].
183 Myers, R.C. and Perry, M.J., “Black Holes in Higher Dimensional Space-Times”, Ann. Phys. (N.Y.), 172, 304–347 (1986). [External LinkDOI].
184 Ortaggio, M., Pravda, V. and Pravdova, A., “Algebraic classification of higher dimensional spacetimes based on null alignment”, Class. Quantum Grav., 30, 013001 (2013). [External LinkDOI], [External LinkarXiv:1211.7289 [gr-qc]].
185 Page, D.N., “A compact rotating gravitational instanton”, Phys. Lett. B, 79, 235–238 (1978). [External LinkDOI].
186 Page, D.N. and Pope, C.N., “Inhomogeneous Einstein metrics on complex line bundles”, Class. Quantum Grav., 4, 213–225 (1987). [External LinkDOI].
187 Pomeransky, A.A. and Sen’kov, R.A., “Black ring with two angular momenta”, arXiv, e-print, (2006). [External LinkADS], [External LinkarXiv:hep-th/0612005].
188 Pope, C.N., “The embedding of the Einstein–Yang–Mills equations in d = 11 supergravity”, Class. Quantum Grav., 2, L77 (1985). [External LinkDOI].
189 Rácz, I., “A simple proof of the recent generalisations of Hawking’s black hole topology theorem”, Class. Quantum Grav., 25, 162001 (2008). [External LinkDOI], [External LinkarXiv:0806.4373 [gr-qc]].
190 Rasheed, D., “The rotating dyonic black holes of Kaluza-Klein theory”, Nucl. Phys. B, 454, 379–401 (1995). [External LinkDOI], [External LinkarXiv:hep-th/9505038 [hep-th]].
191 Reall, H.S., “Higher dimensional black holes and supersymmetry”, Phys. Rev. D, 68, 024024 (2003). [External LinkDOI], [External LinkarXiv:hep-th/0211290 [hep-th]].
192 Reall, H.S., “Counting the microstates of a vacuum black ring”, J. High Energy Phys., 2008(05), 013 (2008). [External LinkDOI], [External LinkarXiv:0712.3226 [hep-th]].
193 Reall, H.S., “Higher dimensional black holes”, Int. J. Mod. Phys. D, 21, 1230001 (2012). [External LinkDOI], [External LinkarXiv:1210.1402 [gr-qc]].
194 Sen, A., “Black hole entropy function and the attractor mechanism in higher derivative gravity”, J. High Energy Phys., 2005(09), 038 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0506177 [hep-th]].
195 Sen, A., “Quantum Entropy Function from AdS2∕CFT1 Correspondence”, Int. J. Mod. Phys. A, 24, 4225–4244 (2009). [External LinkDOI], [External LinkarXiv:0809.3304 [hep-th]].
196 Sheikh-Jabbari, M.M. and Yavartanoo, H., “EVH Black Holes, AdS3 Throats and EVH/CFT Proposal”, J. High Energy Phys., 2011(10), 013 (2011). [External LinkDOI], [External LinkarXiv:1107.5705 [hep-th]].
197 Strominger, A., “Macroscopic entropy of N = 2 extremal black holes”, Phys. Lett. B, 383, 39–43 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9602111 [hep-th]].
198 Strominger, A., “Black hole entropy from near-horizon microstates”, J. High Energy Phys., 1998(02), 009 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/9712251 [hep-th]].
199 Strominger, A., “AdS2 quantum gravity and string theory”, J. High Energy Phys., 1999(01), 007 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/9809027 [hep-th]].
200 Strominger, A. and Vafa, C., “Microscopic origin of the Bekenstein-Hawking entropy”, Phys. Lett. B, 379, 99–104 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9601029 [hep-th]].
201 Susskind, L. and Witten, E., “The Holographic Bound in Anti-de Sitter Space”, arXiv, e-print, (1998). [External LinkADS], [External LinkarXiv:hep-th/9805114].
202 ’t Hooft, G., “Dimensional reduction in quantum gravity”, in Ali, A., Ellis, J. and Randjbar-Daemi, S., eds., Salamfestschrift, A Collection of Talks from the Conference on Highlights of Particle and Condensed Matter Physics, ICTP, Trieste, Italy, 8 – 12 March 1993, World Scientific Series in 20th Century Physics, 4, (World Scientific, Singapore; River Edge, NJ, 1994). [External LinkarXiv:gr-qc/9310026].
203 Tanahashi, N. and Murata, K., “Instability in near-horizon geometries of even-dimensional Myers-Perry black holes”, Class. Quantum Grav., 29, 235002 (2012). [External LinkarXiv:1208.0981 [hep-th]].
204 Tomizawa, S. and Mizoguchi, S., “General Kaluza-Klein black holes with all six independent charges in five-dimensional minimal supergravity”, Phys. Rev. D, 87, 024027 (2013). [External LinkDOI], [External LinkarXiv:1210.6723 [hep-th]].
205 Volkov, M.S. and Gal’tsov, D.V., “Gravitating non-Abelian solitons and black holes with Yang–Mills fields”, Phys. Rep., 319, 1–83 (1999). [External LinkDOI], [External LinkarXiv:hep-th/9810070 [hep-th]].
206 Witten, E., “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys., 2, 253–291 (1998). [External LinkarXiv:hep-th/9802150 [hep-th]].
207 Witten, E., “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories”, Adv. Theor. Math. Phys., 2, 505–532 (1998). [External LinkarXiv:hep-th/9803131 [hep-th]].
208 Woolgar, E., “Bounded area theorems for higher genus black holes”, Class. Quantum Grav., 16, 3005–3012 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9906096 [gr-qc]].
209 Wu, X.-N. and Tian, Y., “Extremal isolated horizon/CFT correspondence”, Phys. Rev. D, 80, 024014 (2009). [External LinkDOI], [External LinkarXiv:0904.1554 [hep-th]].
210 Yazadjiev, S.S., “Area-angular momentum-charge inequality for stable marginally outer trapped surfaces in 4D Einstein-Maxwell-dilaton theory”, Phys. Rev. D, 87, 024016 (2013). [External LinkDOI], [External LinkarXiv:1210.4684 [gr-qc]].
211 Yazadjiev, S.S., “Horizon area–angular momentum–charge–magnetic fluxes inequalities in 5D Einstein–Maxwell-dilaton gravity”, Class. Quantum Grav., 30, 115010 (2013). [External LinkDOI], [External LinkarXiv:1301.1548 [hep-th]].