sidebar
"Quantum-Spacetime Phenomenology"
Giovanni Amelino-Camelia 
Abstract
1 Introduction and Preliminaries
2 Quantum-Gravity Theories, Quantum Spacetime, and Candidate Effects
3 Quantum-Spacetime Phenomenology of UV Corrections to Lorentz Symmetry
4 Other Areas of UV Quantum-Spacetime Phenomenology
5 Infrared Quantum-Spacetime Phenomenology
6 Quantum-Spacetime Cosmology
7 Quantum-Spacetime Phenomenology Beyond the Standard Setup
8 Closing Remarks
References
Footnotes
Figures
A warning to readers: whereas originally the denomination “Standard Model Extension” was universally used to describe a framework implementing the restriction to powercounting-renormalizable correction terms, recently (see, e.g., Ref. [123Jump To The Next Citation Point]) some theorists describe as “Standard Model Extension” the generalization that includes correction terms that are not powercounting renormalizable, while they describe as a “Minimal Standard Model Extension” the case with the original restriction to powercounting-renormalizable correction terms. Still, even as I write this review, many authors (in particular the near totality of experimentalists involved in such studies) continue to adopt the original description of the “Standard Model Extension”, restricted to powercounting-renormalizable correction terms, and this may create some confusion (for example experimentalists reporting results on the “Standard Model Extension” are actually, according to the terminology now used by some theorists, describing experimental limits on the “Minimal Standard Model Extension”).