References
1 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors”, Class. Quantum Grav., 27, 173001 (2010). [DOI], [ADS], [arXiv:1003.2480 [astro-ph.HE]]. | |
2 | Acernese, F. et al. (Virgo Collaboration), Advanced Virgo Baseline Design, VIR-027A-09,
(Virgo, Cascina, 2009). Online version (accessed 26 July 2013): http://tds.ego-gw.it/ql/?c=6589. |
|
3 | Adelberger, E.G., Heckel, B.R. and Nelson, A.E., “Tests of the Gravitational Inverse-Square Law”, Annu. Rev. Nucl. Part. Sci., 53, 77–121 (2003). [DOI], [ADS], [arXiv:hep-ph/0307284]. | |
4 | Ajith, P. et al., “Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries”, Phys. Rev. D, 77, 104017 (2008). [DOI], [ADS], [arXiv:0710.2335 [gr-qc]]. | |
5 | Ajith, P. et al., “Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Nonprecessing Spins”, Phys. Rev. Lett., 106, 241101 (2011). [DOI], [ADS], [arXiv:0909.2867 [gr-qc]]. | |
6 | Alexander, S., Finn, L.S. and Yunes, N., “Gravitational-wave probe of effective quantum gravity”, Phys. Rev. D, 78, 066005 (2008). [DOI], [ADS], [arXiv:0712.2542 [gr-qc]]. | |
7 | Alexander, S.H.S. and Gates Jr, S.J., “Can the string scale be related to the cosmic baryon asymmetry?”, J. Cosmol. Astropart. Phys., 2006(06), 018 (2006). [DOI], [ADS], [arXiv:hep-th/0409014]. | |
8 | Alexander, S. and Yunes, N., “New Post-Newtonian Parameter to Test Chern-Simons Gravity”, Phys. Rev. Lett., 99, 241101 (2007). [DOI], [ADS], [arXiv:hep-th/0703265]. | |
9 | Alexander, S. and Yunes, N., “Parametrized post-Newtonian expansion of Chern-Simons gravity”, Phys. Rev. D, 75, 124022 (2007). [DOI], [ADS], [arXiv:0704.0299 [hep-th]]. | |
10 | Alexander, S. and Yunes, N., “Chern-Simons modified gravity as a torsion theory and its interaction with fermions”, Phys. Rev. D, 77, 124040 (2008). [DOI], [ADS], [arXiv:0804.1797 [gr-qc]]. | |
11 | Alexander, S. and Yunes, N., “Chern-Simons modified general relativity”, Phys. Rep., 480, 1–55 (2009). [DOI], [ADS], [arXiv:0907.2562 [hep-th]]. | |
12 | Ali-Haïmoud, Y., “Revisiting the double-binary-pulsar probe of nondynamical Chern-Simons gravity”, Phys. Rev. D, 83, 124050 (2011). [DOI], [ADS], [arXiv:1105.0009 [astro-ph.HE]]. | |
13 | Ali-Haïmoud, Y. and Chen, Y., “Slowly rotating stars and black holes in dynamical Chern-Simons gravity”, Phys. Rev. D, 84, 124033 (2011). [DOI], [ADS], [arXiv:1110.5329 [astro-ph.HE]]. | |
14 | Alvarez-Gaumé, L. and Witten, E., “Gravitational anomalies”, Nucl. Phys. B, 234, 269–330 (1984). [DOI], [ADS]. | |
15 | Alves, M.E.S. and Tinto, M., “Pulsar timing sensitivities to gravitational waves from relativistic metric theories of gravity”, Phys. Rev. D, 83, 123529 (2011). [DOI], [ADS], [arXiv:1102.4824 [gr-qc]]. | |
16 | Amaro-Seoane, P., “Stellar dynamics and extreme-mass ratio inspirals”, arXiv, e-print, (2012). [ADS], [arXiv:1205.5240 [astro-ph.CO]]. | |
17 | Amaro-Seoane, P., Brem, P., Cuadra, J. and Armitage, P.J., “The Butterfly Effect in the Extreme-mass Ratio Inspiral Problem”, Astrophys. J. Lett., 744, L20 (2012). [DOI], [ADS], [arXiv:1108.5174 [astro-ph.CO]]. | |
18 | Amaro-Seoane, P., Gair, J.R., Freitag, M., Miller, M.C., Mandel, I., Cutler, C. and Babak, S., “Intermediate and extreme mass-ratio inspirals – astrophysics, science applications and detection using LISA”, Class. Quantum Grav., 24, R113–R169 (2007). [DOI], [ADS], [arXiv:astro-ph/0703495]. | |
19 | Amaro-Seoane, P. and Preto, M., “The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth”, Class. Quantum Grav., 28, 094017 (2011). [DOI], [ADS], [arXiv:1010.5781 [astro-ph.CO]]. | |
20 | Amaro-Seoane, P. et al., “Low-frequency gravitational-wave science with eLISA/NGO”, Class. Quantum Grav., 29, 124016 (2012). [DOI], [ADS], [arXiv:1202.0839 [gr-qc]]. | |
21 | Amaro-Seoane, P. et al., “eLISA: Astrophysics and cosmology in the millihertz regime”, GW Notes, 6, 4–110 (2013). [ADS], [arXiv:1201.3621 [astro-ph.CO]]. | |
22 | Amelino-Camelia, G., “The three perspectives on the quantum-gravity problem and their implications for the fate of Lorentz symmetry”, arXiv, e-print, (2003). [ADS], [arXiv:gr-qc/0309054]. | |
23 | Ando, M. et al. (DECIGO Collaboration), “DECIGO pathfinder”, Class. Quantum Grav., 26, 094019 (2009). [DOI], [ADS]. | |
24 | Apostolatos, T.A., Lukes-Gerakopoulos, G. and Contopoulos, G., “How to Observe a Non-Kerr Spacetime Using Gravitational Waves”, Phys. Rev. Lett., 103, 111101 (2009). [DOI], [ADS], [arXiv:0906.0093 [gr-qc]]. | |
25 | Armano, M. et al., “LISA Pathfinder: the experiment and the route to LISA”, Class. Quantum Grav., 26, 094001 (2009). [DOI], [ADS]. | |
26 | Arun, K.G., “Generic bounds on dipolar gravitational radiation from inspiralling compact binaries”, Class. Quantum Grav., 29, 075011 (2012). [DOI], [ADS], [arXiv:1202.5911 [gr-qc]]. | |
27 | Arun, K.G., Iyer, B.R., Qusailah, M.S.S. and Sathyaprakash, B.S., “Probing the nonlinear structure of general relativity with black hole binaries”, Phys. Rev. D, 74, 024006 (2006). [DOI], [ADS], [arXiv:gr-qc/0604067]. | |
28 | Arun, K.G., Iyer, B.R., Qusailah, M.S.S. and Sathyaprakash, B.S., “Testing post-Newtonian theory with gravitational wave observations”, Class. Quantum Grav., 23, L37–L43 (2006). [DOI], [ADS], [arXiv:gr-qc/0604018]. | |
29 | Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., Sinha, S. and Van Den Broeck, C., “Higher signal harmonics, LISA’s angular resolution, and dark energy”, Phys. Rev. D, 76, 104016 (2007). [DOI], [ADS], [arXiv:0707.3920]. | |
30 | Arun, K.G., Iyer, B.R, Sathyaprakash, B.S. and Sundararajan, P.A., “Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case”, Phys. Rev. D, 71, 084008 (2005). [DOI]. | |
31 | Arun, K.G. and Pai, A., “Tests of General Relativity and Alternative Theories of Gravity Using Gravitational Wave Observations”, Int. J. Mod. Phys. D, 22, 1341012 (2013). [DOI], [ADS], [arXiv:1302.2198 [gr-qc]]. | |
32 | Arun, K.G. and Will, C.M., “Bounding the mass of the graviton with gravitational waves: effect of higher harmonics in gravitational waveform templates”, Class. Quantum Grav., 26, 155002 (2009). [DOI], [ADS], [arXiv:0904.1190 [gr-qc]]. | |
33 | Arun, K.G. et al., “Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce”, Class. Quantum Grav., 26, 094027 (2009). [DOI], [ADS], [arXiv:0811.1011 [gr-qc]]. | |
34 | Arvanitaki, A. and Dubovsky, S., “Exploring the string axiverse with precision black hole physics”, Phys. Rev. D, 83, 044026 (2011). [DOI], [ADS], [arXiv:1004.3558 [hep-th]]. | |
35 | Babak, S., Gair, J.R. and Porter, E.K., “An algorithm for the detection of extreme mass ratio inspirals in LISA data”, Class. Quantum Grav., 26, 135004 (2009). [DOI], [ADS], [arXiv:0902.4133 [gr-qc]]. | |
36 | Babak, S. and Grishchuk, L.P., “Finite-Range Gravity and its Role in Gravitational Waves, Black Holes and Cosmology”, Int. J. Mod. Phys. D, 12, 1905–1959 (2003). [DOI], [ADS], [arXiv:gr-qc/0209006]. | |
37 | Babak, S. et al. (Challenge-1B participants), “The Mock LISA Data Challenges: from Challenge 1B to Challenge 3”, Class. Quantum Grav., 25, 184026 (2008). [DOI], [ADS], [arXiv:0806.2110 [gr-qc]]. | |
38 | Babak, S. et al., LISA Data Analysis Status, LISA-MSO-TN-1001-2-1, (LISA Mission Science
Office, Greenbelt, MD, 2009). Online version (accessed 26 July 2013): http://lisa.gsfc.nasa.gov/documentation.html. |
|
39 | Babak, S. et al. (Challenge 3 participants), “The Mock LISA Data Challenges: from challenge 3 to challenge 4”, Class. Quantum Grav., 27, 084009 (2010). [DOI], [ADS], [arXiv:0912.0548 [gr-qc]]. | |
40 | Babichev, E. and Deffayet, C., “An introduction to the Vainshtein mechanism”, arXiv, e-print, (2013). [ADS], [arXiv:1304.7240 [gr-qc]]. | |
41 | Babichev, E., Deffayet, C. and Ziour, R., “Recovery of general relativity in massive gravity via the Vainshtein mechanism”, Phys. Rev. D, 82, 104008 (2010). [DOI], [ADS], [arXiv:1007.4506 [gr-qc]]. | |
42 | Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J.R., “Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96, 111102 (2006). [DOI], [ADS], [arXiv:gr-qc/0511103]. | |
43 | Baker, J.G. and Thorpe, J.I., “Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors”, Phys. Rev. Lett., 108, 211101 (2012). [DOI], [ADS], [arXiv:1201.5656 [gr-qc]]. | |
44 | Balmelli, S. and Jetzer, P., “Effective-one-body Hamiltonian with next-to-leading order spin-spin coupling for two nonprecessing black holes with aligned spins”, Phys. Rev. D, 87, 124036 (2013). [DOI], [ADS], [arXiv:1305.5674 [gr-qc]]. | |
45 | Barack, L., “Gravitational self-force in extreme mass-ratio inspirals”, Class. Quantum Grav., 26, 213001 (2009). [DOI], [ADS], [arXiv:0908.1664 [gr-qc]]. | |
46 | Barack, L. and Cutler, C., “LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy”, Phys. Rev. D, 69, 082005 (2004). [DOI], [ADS], [arXiv:gr-qc/0310125]. | |
47 | Barack, L. and Cutler, C., “Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes”, Phys. Rev. D, 75, 042003 (2007). [DOI], [ADS], [arXiv:gr-qc/0612029]. | |
48 | Barack, L. and Sago, N., “Gravitational self-force on a particle in circular orbit around a Schwarzschild black hole”, Phys. Rev. D, 75, 064021 (2007). [DOI], [ADS], [arXiv:gr-qc/0701069]. | |
49 | Barack, L. and Sago, N., “Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole”, Phys. Rev. D, 81, 084021 (2010). [DOI], [ADS], [arXiv:1002.2386 [gr-qc]]. | |
50 | Barausse, E., “Relativistic dynamical friction in a collisional fluid”, Mon. Not. R. Astron. Soc., 382, 826–834 (2007). [DOI], [ADS], [arXiv:0709.0211]. | |
51 | Barausse, E. and Buonanno, A., “Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings”, Phys. Rev. D, 84, 104027 (2011). [DOI], [ADS], [arXiv:1107.2904 [gr-qc]]. | |
52 | Barausse, E. and Rezzolla, L., “Influence of the hydrodynamic drag from an accretion torus on extreme mass-ratio inspirals”, Phys. Rev. D, 77, 104027 (2008). [DOI], [ADS], [arXiv:0711.4558]. | |
53 | Barausse, E., Rezzolla, L., Petroff, D. and Ansorg, M., “Gravitational waves from extreme mass ratio inspirals in nonpure Kerr spacetimes”, Phys. Rev. D, 75, 064026 (2007). [DOI], [ADS], [arXiv:gr-qc/0612123]. | |
54 | Barausse, E. and Sotiriou, T.P., “Perturbed Kerr Black Holes Can Probe Deviations from General Relativity”, Phys. Rev. Lett., 101, 099001 (2008). [DOI], [ADS], [arXiv:0803.3433]. | |
55 | Barausse, E., Sotiriou, T.P. and Miller, J.C., “Curvature singularities, tidal forces and the viability of Palatini f(R) gravity”, Class. Quantum Grav., 25, 105008 (2008). [DOI], [ADS], [arXiv:0712.1141 [gr-qc]]. | |
56 | Barausse, E., Sotiriou, T.P. and Miller, J.C., “A no-go theorem for polytropic spheres in Palatini f(R) gravity”, Class. Quantum Grav., 25, 062001 (2008). [DOI], [ADS], [arXiv:gr-qc/0703132]. | |
57 | Barbero G, J.F. and Villaseñor, E.J., “Lorentz violations and Euclidean signature metrics”, Phys. Rev. D, 68, 087501 (2003). [DOI], [ADS], [arXiv:gr-qc/0307066]. | |
58 | Bauch, A. and Weyers, S., “New experimental limit on the validity of local position invariance”, Phys. Rev. D, 65, 081101(R) (2002). [DOI], [ADS]. | |
59 | Bebronne, M.V., Theoretical and Phenomenological Aspects of Theories with Massive Gravitons, Ph.D. thesis, (Université Libre de Bruxelles, Brussels, Belgium, 2009). [ADS], [arXiv:0910.4066 [gr-qc]]. | |
60 | Begelman, M.C., Volonteri, M. and Rees, M.J., “Formation of supermassive black holes by direct collapse in pre-galactic haloes”, Mon. Not. R. Astron. Soc., 370, 289–298 (2006). [DOI], [ADS], [arXiv:astro-ph/0602363]. | |
61 | Bekenstein, J.D., “Relativistic gravitation theory for the modified Newtonian dynamics paradigm”, Phys. Rev. D, 70, 083509 (2004). [DOI], [ADS], [arXiv:astro-ph/0403694]. | |
62 | Belinfante, F.J. and Swihart, J.C., “Phenomenological linear theory of gravitation: Part I. Classical mechanics”, Ann. Phys. (N.Y.), 1, 168–195 (1957). [DOI], [ADS]. | |
63 | Bender, P.L. and Hils, D., “Confusion noise level due to galactic and extragalactic binaries”, Class. Quantum Grav., 14, 1439–1444 (1997). [DOI], [ADS]. | |
64 | Bender, P.L. et al. (LISA Study Team), LISA. Laser Interferometer Space Antenna for
the detection and observation of gravitational waves. An international project in the field
of Fundamental Physics in Space. Pre-Phase A report, MPQ-233, (Max-Planck-Institut für
Quantenoptik, Garching, 1998). Online version (accessed 26 July 2013): http://list.caltech.edu/mission_documents. |
|
65 | Benenti, S. and Francaviglia, M., “Remarks on certain separability structures and their applications to general relativity”, Gen. Relativ. Gravit., 10, 79–92 (1979). [DOI], [ADS]. | |
66 | Berry, C.P.L. and Gair, J.R., “Linearized f(R) gravity: Gravitational radiation and Solar System tests”, Phys. Rev. D, 83, 104022 (2011). [DOI], [ADS], [arXiv:1104.0819 [gr-qc]]. | |
67 | Berry, C.P.L. and Gair, J.R., “Extreme-mass-ratio-bursts from extragalactic sources”, Mon. Not. R. Astron. Soc., 433, 3572–3583 (2013). [DOI], [ADS], [arXiv:1306.0774 [astro-ph.HE]]. | |
68 | Berry, C.P.L. and Gair, J.R., “Observing the Galaxy’s massive black hole with gravitational wave bursts”, Mon. Not. R. Astron. Soc., 429, 589–612 (2013). [DOI], [ADS], [arXiv:1210.2778 [astro-ph.HE]]. | |
69 | Berti, E., “Astrophysical Black Holes as Natural Laboratories for Fundamental Physics and Strong-Field Gravity”, Braz. J. Phys. (2013). [DOI], [ADS], [arXiv:1302.5702 [gr-qc]]. | |
70 | Berti, E., Buonanno, A. and Will, C.M., “Estimating spinning binary parameters and testing alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025 (2005). [DOI], [ADS], [arXiv:gr-qc/0411129]. | |
71 | Berti, E., Buonanno, A. and Will, C.M., “Testing general relativity and probing the merger history of massive black holes with LISA”, Class. Quantum Grav., 22, S943–S954 (2005). [DOI], [ADS], [arXiv:gr-qc/0504017]. | |
72 | Berti, E., Cardoso, J., Cardoso, V. and Cavaglià, M., “Matched filtering and parameter estimation of ringdown waveforms”, Phys. Rev. D, 76, 104044 (2007). [DOI], [ADS], [arXiv:0707.1202 [gr-qc]]. | |
73 | Berti, E. and Cardoso, V., “Supermassive Black Holes or Boson Stars? Hair Counting with Gravitational Wave Detectors”, Int. J. Mod. Phys. D, 15, 2209–2216 (2006). [DOI], [ADS], [arXiv:gr-qc/0605101]. | |
74 | Berti, E., Cardoso, V., Gonzalez, J.A., Sperhake, U., Hannam, M., Husa, S. and Brügmann, B., “Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis”, Phys. Rev. D, 76, 064034 (2007). [DOI], [ADS], [arXiv:gr-qc/0703053]. | |
75 | Berti, E., Cardoso, V., Gualtieri, L., Horbatsch, M. and Sperhake, U., “Numerical simulations of single and binary black holes in scalar-tensor theories: Circumventing the no-hair theorem”, Phys. Rev. D, 87, 124020 (2013). [DOI], [ADS], [arXiv:1304.2836 [gr-qc]]. | |
76 | Berti, E., Cardoso, V. and Starinets, A.O., “Quasinormal modes of black holes and black branes”, Class. Quantum Grav., 26, 163001 (2009). [DOI], [ADS], [arXiv:0905.2975 [gr-qc]]. | |
77 | Berti, E., Cardoso, V. and Will, C.M., “Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA”, Phys. Rev. D, 73, 064030 (2006). [DOI], [ADS], [arXiv:gr-qc/0512160]. | |
78 | Berti, E., Gair, J.R. and Sesana, A., “Graviton mass bounds from space-based gravitational-wave observations of massive black hole populations”, Phys. Rev. D, 84, 101501 (2011). [DOI], [ADS], [arXiv:1107.3528 [gr-qc]]. | |
79 | Berti, E., Gualtieri, L., Horbatsch, M. and Alsing, J., “Light scalar field constraints from gravitational-wave observations of compact binaries”, Phys. Rev. D, 85, 122005 (2012). [DOI], [ADS], [arXiv:1204.4340 [gr-qc]]. | |
80 | Berti, E. and Volonteri, M., “Cosmological Black Hole Spin Evolution by Mergers and Accretion”, Astrophys. J., 684, 822–828 (2008). [DOI], [ADS], [arXiv:0802.0025]. | |
81 | Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376 (2003). [DOI], [ADS]. | |
82 | Binétruy, P., Bohé, A., Caprini, C. and Dufaux, J.-F., “Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources”, J. Cosmol. Astropart. Phys., 2012(06), 027 (2012). [DOI], [ADS], [arXiv:1201.0983 [gr-qc]]. | |
83 | Bisnovatyi-Kogan, G.S. and Blinnikov, S.I., “Disk accretion onto a black hole at subcritical luminosity”, Astron. Astrophys., 59, 111–125 (1977). [ADS]. | |
84 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 9, lrr-2006-4 (2006). [DOI], [ADS]. URL (accessed 26 July
2013): http://www.livingreviews.org/lrr-2006-4. |
|
85 | Blanchet, L., Damour, T., Esposito-Farèse, G. and Iyer, B.R., “Gravitational Radiation from Inspiralling Compact Binaries Completed at the Third Post-Newtonian Order”, Phys. Rev. Lett., 93, 091101 (2004). [DOI]. | |
86 | Blanchet, L., Damour, T., Iyer, B.R., Will, C.M. and Wiseman, A.G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515–3518 (1995). [DOI]. | |
87 | Blanchet, L., Faye, G., Iyer, B.R. and Joguet, B., “Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501(R) (2002). [DOI]. | |
88 | Blanchet, L. and Sathyaprakash, B.S., “Detecting a Tail Effect in Gravitational-Wave Experiments”, Phys. Rev. Lett., 74, 1067–1070 (1995). [DOI], [ADS]. | |
89 | Błaut, A., “Angular and frequency response of the gravitational wave interferometers in the metric theories of gravity”, Phys. Rev. D, 85, 043005 (2012). [DOI], [ADS]. | |
90 | Błaut, A., Babak, S. and Królak, A., “Mock LISA data challenge for the Galactic white dwarf binaries”, Phys. Rev. D, 81, 063008 (2010). [DOI], [ADS], [arXiv:0911.3020 [gr-qc]]. | |
91 | Bondi, H., “On spherically symmetrical accretion”, Mon. Not. R. Astron. Soc., 112, 195–204 (1952). [ADS]. | |
92 | Bondi, H. and Hoyle, F., “On the mechanism of accretion by stars”, Mon. Not. R. Astron. Soc., 104, 273–282 (1944). [ADS]. | |
93 | Brink, J., “Spacetime encodings. I. A spacetime reconstruction problem”, Phys. Rev. D, 78, 102001 (2008). [DOI], [ADS], [arXiv:0807.1178]. | |
94 | Brink, J., “Spacetime encodings. II. Pictures of integrability”, Phys. Rev. D, 78, 102002 (2008). [DOI], [ADS], [arXiv:0807.1179]. | |
95 | Brown, D.A., Brink, J., Fang, H., Gair, J.R., Li, C., Lovelace, G., Mandel, I. and Thorne, K.S., “Prospects for Detection of Gravitational Waves from Intermediate-Mass-Ratio Inspirals”, Phys. Rev. Lett., 99, 201102 (2007). [DOI], [ADS], [arXiv:gr-qc/0612060]. | |
96 | Brown, D.A., Crowder, J., Cutler, C., Mandel, I. and Vallisneri, M., “A three-stage search for supermassive black-hole binaries in LISA data”, Class. Quantum Grav., 24, 595 (2007). [DOI], [ADS], [arXiv:0704.2447 [gr-qc]]. | |
97 | Brownstein, J.R. and Moffat, J.W., “Galaxy Rotation Curves without Nonbaryonic Dark Matter”, Astrophys. J., 636, 721–741 (2006). [DOI], [ADS], [arXiv:astro-ph/0506370]. | |
98 | Brownstein, J.R. and Moffat, J.W., “The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter”, Mon. Not. R. Astron. Soc., 382, 29–47 (2007). [DOI], [ADS], [arXiv:astro-ph/0702146]. | |
99 | Buonanno, A. and Damour, T., “Effective one-body approach to general relativistic two-body dynamics”, Phys. Rev. D, 59, 084006 (1999). [DOI], [ADS], [arXiv:gr-qc/9811091]. | |
100 | Buonanno, A. and Damour, T., “Transition from inspiral to plunge in binary black hole coalescences”, Phys. Rev. D, 62, 064015 (2000). [DOI], [ADS], [arXiv:gr-qc/0001013]. | |
101 | Buonanno, A., Pan, Y., Pfeiffer, H.P., Scheel, M.A., Buchman, L.T. and Kidder, L.E., “Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonspinning, equal-mass black holes”, Phys. Rev. D, 79, 124028 (2009). [DOI], [ADS], [arXiv:0902.0790 [gr-qc]]. | |
102 | Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y., “Accurate Evolutions of Orbiting Black-Hole Binaries without Excision”, Phys. Rev. Lett., 96, 111101 (2006). [DOI], [ADS], [arXiv:gr-qc/0511048]. | |
103 | Canizares, P., Gair, J.R. and Sopuerta, C.F., “Testing Chern-Simons modified gravity with gravitational-wave detections of extreme-mass-ratio binaries”, Phys. Rev. D, 86, 044010 (2012). [DOI], [ADS], [arXiv:1205.1253 [gr-qc]]. | |
104 | Canizares, P., Gair, J.R. and Sopuerta, C.F., “Testing Chern-Simons modified gravity with observations of extreme-mass-ratio binaries”, J. Phys.: Conf. Ser., 363, 012019 (2012). [DOI], [ADS], [arXiv:1206.0322 [gr-qc]]. | |
105 | Cannella, U., Effective Field Theory Methods in Gravitational Physics and Tests of Gravity, Ph.D. thesis, (University of Geneva, Geneva, Switzerland, 2011). [ADS], [arXiv:1103.0983 [gr-qc]]. | |
106 | Cannella, U., Foffa, S., Maggiore, M., Sanctuary, H. and Sturani, R., “Extracting the three- and four-graviton vertices from binary pulsars and coalescing binaries”, Phys. Rev. D, 80, 124035 (2009). [DOI], [ADS], [arXiv:0907.2186 [gr-qc]]. | |
107 | Capozziello, S., Carloni, S. and Troisi, A., “Quintessence without scalar fields”, in Pandalai, S.G., ed., Recent Research Developments in Astronomy and Astrophysics, Vol. 1, p. 625, (Research Signpost, Trivandrum, India, 2003). [ADS], [arXiv:astro-ph/0303041]. | |
108 | Capozziello, S. and Francaviglia, M., “Extended theories of gravity and their cosmological and astrophysical applications”, Gen. Relativ. Gravit., 40, 357–420 (2008). [DOI]. | |
109 | Capozziello, S., Stabile, A. and Troisi, A., “a General Solution in the Newtonian Limit of f(R)-GRAVITY”, Mod. Phys. Lett. A, 24, 659–665 (2009). [DOI], [ADS], [arXiv:0901.0448 [gr-qc]]. | |
110 | Cardoso, V., Chakrabarti, S., Pani, P., Berti, E. and Gualtieri, L., “Floating and Sinking: The Imprint of Massive Scalars around Rotating Black Holes”, Phys. Rev. Lett., 107, 241101 (2011). [DOI], [ADS], [arXiv:1109.6021 [gr-qc]]. | |
111 | Cardoso, V. and Gualtieri, L., “Perturbations of Schwarzschild black holes in dynamical Chern-Simons modified gravity”, Phys. Rev. D, 80, 064008 (2009). [DOI], [ADS], [arXiv:0907.5008 [gr-qc]]. | |
112 | Carroll, S.M., Duvvuri, V., Trodden, M. and Turner, M.S., “Is cosmic speed-up due to new gravitational physics?”, Phys. Rev. D, 70, 043528 (2004). [DOI], [ADS], [arXiv:astro-ph/0306438]. | |
113 | Carter, B., “Global Structure of the Kerr Family of Gravitational Fields”, Phys. Rev., 174, 1559–1571 (1968). [DOI], [ADS]. | |
114 | Carter, B., “Axisymmetric black hole has only two degrees of freedom”, Phys. Rev. Lett., 26, 331–333 (1971). [DOI], [ADS]. | |
115 | Celotti, A., Miller, J.C. and Sciama, D.W., “Astrophysical evidence for the existence of black holes”, Class. Quantum Grav., 16, A3–A21 (1999). [DOI], [ADS], [arXiv:astro-ph/9912186]. | |
116 | Cembranos, J.A.R., “Dark Matter from R2 Gravity”, Phys. Rev. Lett., 102, 141301 (2009). [DOI], [ADS], [arXiv:0809.1653 [hep-ph]]. | |
117 | Centrella, J., Baker, J.G., Kelly, B.J. and van Meter, J.R., “Black-hole binaries, gravitational waves, and numerical relativity”, Rev. Mod. Phys., 82, 3069–3119 (2010). [DOI], [ADS], [arXiv:1010.5260 [gr-qc]]. | |
118 | Chamberlin, S.J. and Siemens, X., “Stochastic backgrounds in alternative theories of gravity: Overlap reduction functions for pulsar timing arrays”, Phys. Rev. D, 85, 082001 (2012). [DOI], [ADS], [arXiv:1111.5661 [astro-ph.HE]]. | |
119 | Chandrasekhar, S., The Mathematical Theory of Black Holes, International Series of Monographs on Physics, 69, (Oxford University Press, Oxford; New York, 1992). | |
120 | Chatziioannou, K., Yunes, N. and Cornish, N., “Model-independent test of general relativity: An extended post-Einsteinian framework with complete polarization content”, Phys. Rev. D, 86, 022004 (2012). [DOI], [ADS], [arXiv:1204.2585 [gr-qc]]. | |
121 | Chiba, T., “1∕R gravity and scalar-tensor gravity”, Phys. Lett. B, 575, 1–3 (2003). [DOI], [ADS], [arXiv:astro-ph/0307338]. | |
122 | Ciufolini, I. and Pavlis, E.C., “A confirmation of the general relativistic prediction of the Lense-Thirring effect”, Nature, 431, 958–960 (2004). [DOI], [ADS]. | |
123 | Clowe, D., Bradač, M., Gonzalez, A.H., Markevitch, M., Randall, S.W., Jones, C. and Zaritsky, D., “A Direct Empirical Proof of the Existence of Dark Matter”, Astrophys. J. Lett., 648, L109–L113 (2006). [DOI], [ADS], [arXiv:astro-ph/0608407]. | |
124 | Collins, H., Gravity’s Shadow: The Search for Gravitational Waves, (University of Chicago Press, Chicago; London, 2004). [Google Books]. | |
125 | Collins, N.A. and Hughes, S.A., “Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits”, Phys. Rev. D, 69, 124022 (2004). [DOI], [ADS], [arXiv:gr-qc/0402063]. | |
126 | Comelli, D., “Born-Infeld-type gravity”, Phys. Rev. D, 72, 064018 (2005). [DOI], [ADS]. | |
127 | Cooray, A., “Gravitational-wave background of neutron star-white dwarf binaries”, Mon. Not. R. Astron. Soc., 354, 25–30 (2004). [DOI], [ADS], [arXiv:astro-ph/0406467]. | |
128 | Cooray, A. and Seto, N., “Graviton mass from close white dwarf binaries detectable with LISA”, Phys. Rev. D, 69, 103502 (2004). [DOI], [ADS], [arXiv:astro-ph/0311054]. | |
129 | Cooray, A. and Seto, N., “Can the Laser Interferometer Space Antenna Resolve the Distance to the Large Magellanic Cloud?”, Astrophys. J. Lett., 623, L113–L116 (2005). [DOI], [ADS], [arXiv:astro-ph/0502500]. | |
130 | Cornish, N.J., “Detection strategies for extreme mass ratio inspirals”, Class. Quantum Grav., 28, 094016 (2011). [DOI], [ADS], [arXiv:0804.3323 [gr-qc]]. | |
131 | Cornish, N.J. and Larson, S.L., “LISA data analysis: Source identification and subtraction”, Phys. Rev. D, 67, 103001 (2003). [DOI], [ADS], [arXiv:astro-ph/0301548]. | |
132 | Cornish, N.J. and Porter, E.K., “The search for massive black hole binaries with LISA”, Class. Quantum Grav., 24, 5729–5755 (2007). [DOI], [ADS], [arXiv:gr-qc/0612091]. | |
133 | Cornish, N.J. and Rubbo, L.J., “LISA response function”, Phys. Rev. D, 67, 022001 (2003). [DOI], [ADS]. | |
134 | Cornish, N.J., Sampson, L., Yunes, N. and Pretorius, F., “Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework”, Phys. Rev. D, 84, 062003 (2011). [DOI], [ADS], [arXiv:1105.2088 [gr-qc]]. | |
135 | Crowder, J. and Cornish, N.J., “Beyond LISA: Exploring future gravitational wave missions”, Phys. Rev. D, 72, 083005 (2005). [DOI], [ADS], [arXiv:gr-qc/0506015]. | |
136 | Crowder, J. and Cornish, N.J., “Solution to the galactic foreground problem for LISA”, Phys. Rev. D, 75, 043008 (2007). [DOI], [ADS], [arXiv:astro-ph/0611546]. | |
137 | Cutler, C., “Angular resolution of the LISA gravitational wave detector”, Phys. Rev. D, 57, 7089–7102 (1998). [DOI], [ADS], [arXiv:gr-qc/9703068]. | |
138 | Cutler, C. and Harms, J., “Big Bang Observer and the neutron-star-binary subtraction problem”, Phys. Rev. D, 73, 042001 (2006). [DOI], [ADS], [arXiv:gr-qc/0511092]. | |
139 | Cutler, C., Hiscock, W.A. and Larson, S.L., “LISA, binary stars, and the mass of the graviton”, Phys. Rev. D, 67, 024015 (2003). [DOI], [ADS], [arXiv:gr-qc/0209101]. | |
140 | Cutler, C. and Lindblom, L., “Gravitational helioseismology?”, Phys. Rev. D, 54, 1287–1290 (1996). [DOI], [ADS], [arXiv:gr-qc/9601047]. | |
141 | Damour, T., “Coalescence of two spinning black holes: An effective one-body approach”, Phys. Rev. D, 64, 124013 (2001). [DOI], [ADS], [arXiv:gr-qc/0103018]. | |
142 | Damour, T. and Esposito-Farèse, G., “Nonperturbative strong-field effects in tensor-scalar theories of gravitation”, Phys. Rev. Lett., 70, 2220–2223 (1993). [DOI], [ADS]. | |
143 | Damour, T. and Esposito-Farèse, G., “Gravitational-wave versus binary-pulsar tests of strong-field gravity”, Phys. Rev. D, 58, 042001 (1998). [DOI], [ADS], [arXiv:gr-qc/9803031]. | |
144 | Damour, T., Nagar, A. and Bernuzzi, S., “Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion”, Phys. Rev. D, 87, 084035 (2013). [DOI], [ADS], [arXiv:1212.4357 [gr-qc]]. | |
145 | Davies, M.B. and King, A., “The Stars of the Galactic Center”, Astrophys. J. Lett., 624, L25–L27 (2005). [DOI], [ADS], [arXiv:astro-ph/0503441]. | |
146 | de Felice, A. and Tsujikawa, S., “f(R) Theories”, Living Rev. Relativity, 13, lrr-2010-3 (2010).
[DOI], [ADS], [arXiv:1002.4928 [gr-qc]]. URL (accessed 26 July 2013): http://www.livingreviews.org/lrr-2010-3. |
|
147 | de Freitas Pacheco, J.A., Filloux, C. and Regimbau, T., “Capture rates of compact objects by supermassive black holes”, Phys. Rev. D, 74, 023001 (2006). [DOI], [ADS], [arXiv:astro-ph/0606427]. | |
148 | Del Pozzo, W., Veitch, J. and Vecchio, A., “Testing general relativity using Bayesian model selection: Applications to observations of gravitational waves from compact binary systems”, Phys. Rev. D, 83, 082002 (2011). [DOI], [ADS], [arXiv:1101.1391 [gr-qc]]. | |
149 | Dhurandhar, S.V. and Tinto, M., “Time-Delay Interferometry”, Living Rev. Relativity, 8,
lrr-2005-4 (2005). [DOI], [ADS]. URL (accessed 26 July 2013): http://www.livingreviews.org/lrr-2005-4. |
|
150 | Di Stefano, R., Greiner, J., Murray, S. and Garcia, M., “A New Way to Detect Massive Black Holes in Galaxies: The Stellar Remnants of Tidal Disruption”, Astrophys. J. Lett., 551, L37–L40 (2001). [DOI], [ADS], [arXiv:astro-ph/0112434]. | |
151 | Diener, P., Vega, I., Wardell, B. and Detweiler, S., “Self-Consistent Orbital Evolution of a Particle around a Schwarzschild Black Hole”, Phys. Rev. Lett., 108, 191102 (2012). [DOI], [ADS], [arXiv:1112.4821 [gr-qc]]. | |
152 | Doeleman, S.S. et al., “Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87”, Science, 338, 355–358 (2012). [DOI], [ADS], [arXiv:1210.6132 [astro-ph.HE]]. | |
153 | Dolgov, A.D. and Kawasaki, M., “Can modified gravity explain accelerated cosmic expansion?”, Phys. Lett. B, 573, 1–4 (2003). [DOI], [ADS], [arXiv:astro-ph/0307285]. | |
154 | Drasco, S. and Hughes, S.A., “Gravitational wave snapshots of generic extreme mass ratio inspirals”, Phys. Rev. D, 73, 024027 (2006). [DOI], [ADS], [arXiv:gr-qc/0509101]. | |
155 | Dreyer, O., Kelly, B.J., Krishnan, B., Finn, L.S., Garrison, D. and Lopez-Aleman, R., “Black-hole spectroscopy: testing general relativity through gravitational-wave observations”, Class. Quantum Grav., 21, 787–803 (2004). [DOI], [ADS], [arXiv:gr-qc/0309007]. | |
156 | Droz, S., Heusler, M. and Straumann, N., “New black hole solutions with hair”, Phys. Lett. B, 268, 371–376 (1991). [DOI], [ADS]. | |
157 | Dubeibe, F.L., Pachón, L.A. and Sanabria-Gómez, J.D., “Chaotic dynamics around astrophysical objects with nonisotropic stresses”, Phys. Rev. D, 75, 023008 (2007). [DOI], [ADS], [arXiv:gr-qc/0701065]. | |
158 | Dyda, S., Flanagan, É.É. and Kamionkowski, M., “Vacuum instability in Chern-Simons gravity”, Phys. Rev. D, 86, 124031 (2012). [DOI], [ADS], [arXiv:1208.4871 [gr-qc]]. | |
159 | Eardley, D.M., Lee, D.L. and Lightman, A.P., “Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity”, Phys. Rev. D, 8, 3308–3321 (1973). [DOI], [ADS]. | |
160 | Eardley, D.M., Lee, D.L., Lightman, A.P., Wagoner, R.V. and Will, C.M., “Gravitational-wave observations as a tool for testing relativistic gravity”, Phys. Rev. Lett., 30, 884–886 (1973). [DOI], [ADS]. | |
161 | Edlund, J.A., Tinto, M., Królak, A. and Nelemans, G., “Simulation of the white dwarf white dwarf galactic background in the LISA data”, Class. Quantum Grav., 22, 913 (2005). [DOI], [ADS], [arXiv:gr-qc/0504026]. | |
162 | Edlund, J.A., Tinto, M., Królak, A. and Nelemans, G., “White-dwarf white-dwarf galactic background in the LISA data”, Phys. Rev. D, 71, 122003 (2005). [DOI], [ADS], [arXiv:gr-qc/0504112]. | |
163 | Eling, C., Jacobson, T. and Mattingly, D., “Einstein-Æther Theory”, in Liu, J.T., Duff, M.J., Stelle, K.S. and Woodard, R.P., eds., Deserfest: A Celebration of the Life and Works of Stanley Deser, University of Michigan, Ann Arbor, USA, 3 – 5 April 2004, pp. 163–179, (World Scientific, Singapore; River Edge, NJ, 2006). [DOI], [ADS], [arXiv:gr-qc/0410001 [gr-qc]]. | |
164 | Emparan, R., Fabbri, A. and Kaloper, N., “Quantum Black Holes as Holograms in AdS Braneworlds”, J. High Energy Phys., 2002(08), 043 (2002). [DOI], [ADS], [arXiv:hep-th/0206155]. | |
165 | Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational Field Problem”, Phys. Rev., 167, 1175–1177 (1968). [DOI], [ADS]. | |
166 | Estabrook, F. and Wahlquist, H., “Response of Doppler spacecraft tracking to gravitational radiation”, Gen. Relativ. Gravit., 6, 439–447 (1975). [DOI], [ADS]. | |
167 | “European Gravitational Observatory”, project homepage, EGO. URL (accessed 26 July 2013):
http://www.ego-gw.it. |
|
168 | Evans, J.D., Hall, L.M.H. and Caillol, P., “Standard cosmological evolution in a wide range of f(R) models”, Phys. Rev. D, 77, 083514 (2008). [DOI], [ADS], [arXiv:0711.3695]. | |
169 | Everitt, C.W.F. et al., “Gravity Probe B: Final Results of a Space Experiment to Test General Relativity”, Phys. Rev. Lett., 106, 221101 (2011). [DOI], [ADS], [arXiv:1105.3456 [gr-qc]]. | |
170 | Fang, H. and Lovelace, G., “Tidal coupling of a Schwarzschild black hole and circularly orbiting moon”, Phys. Rev. D, 72, 124016 (2005). [DOI], [ADS], [arXiv:gr-qc/0505156]. | |
171 | Farmer, A.J. and Phinney, E.S., “The gravitational wave background from cosmological compact binaries”, Mon. Not. R. Astron. Soc., 346, 1197–1214 (2003). [DOI], [ADS], [arXiv:astro-ph/0304393]. | |
172 | Feroz, F., Gair, J.R., Hobson, M.P. and Porter, E.K., “Use of the MULTINEST algorithm for gravitational wave data analysis”, Class. Quantum Grav., 26, 215003 (2009). [DOI], [ADS], [arXiv:0904.1544 [gr-qc]]. | |
173 | Ferrarese, L. and Ford, H., “Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research”, Space Sci. Rev., 116, 523–624 (2005). [DOI], [ADS], [arXiv:astro-ph/0411247]. | |
174 | Ferrarese, L. and Merritt, D., “A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies”, Astrophys. J. Lett., 539, L9–L12 (2000). [DOI], [ADS], [arXiv:astro-ph/0006053]. | |
175 | Fierz, M., “Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin”, Helv. Phys. Acta, 12, 3–37 (1939). [DOI]. | |
176 | Fierz, M. and Pauli, W., “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. R. Soc. London, Ser. A, 173, 211–232 (1939). [DOI], [ADS]. | |
177 | Finn, L.S., “Gravitational waves from solar oscillations: Proposal for a transition-zone test of general relativity”, Class. Quantum Grav., 2, 381–402 (1985). [DOI], [ADS]. | |
178 | Finn, L.S. and Sutton, P.J., “Bounding the mass of the graviton using binary pulsar observations”, Phys. Rev. D, 65, 044022 (2002). [DOI], [ADS], [arXiv:gr-qc/0109049]. | |
179 | Finn, L.S. and Thorne, K.S., “Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA”, Phys. Rev. D, 62, 124021 (2000). [DOI], [ADS], [arXiv:gr-qc/0007074]. | |
180 | Flanagan, É.É., “Higher-order gravity theories and scalar tensor theories”, Class. Quantum Grav., 21, 417–426 (2004). [DOI], [ADS], [arXiv:gr-qc/0309015]. | |
181 | Flanagan, É.É. and Hinderer, T., “Transient Resonances in the Inspirals of Point Particles into Black Holes”, Phys. Rev. Lett., 109, 071102 (2012). [DOI], [ADS], [arXiv:1009.4923 [gr-qc]]. | |
182 | Flanagan, É.É. and Hughes, S.A., “Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown”, Phys. Rev. D, 57, 4535–4565 (1998). [DOI], [ADS], [arXiv:gr-qc/9701039]. | |
183 | Fodor, G., Hoenselaers, C. and Perjés, Z., “Multipole moments of axisymmetric systems in relativity”, J. Math. Phys., 30, 2252–2257 (1989). [DOI], [ADS]. | |
184 | Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”,
Living Rev. Relativity, 11, lrr-2008-7 (2008). [DOI], [ADS]. URL (accessed 26 July 2013): http://www.livingreviews.org/lrr-2008-7. |
|
185 | Foster, B.Z., “Metric redefinitions in Einstein-Æther theory”, Phys. Rev. D, 72, 044017 (2005). [DOI], [ADS], [arXiv:gr-qc/0502066]. | |
186 | Freire, P.C.C. et al., “The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity”, Mon. Not. R. Astron. Soc., 423, 3328–3343 (2012). [DOI], [ADS], [arXiv:1205.1450 [astro-ph.GA]]. | |
187 | Freitag, M., “Gravitational Waves from Stars Orbiting the Sagittarius A* Black Hole”, Astrophys. J. Lett., 583, L21–L24 (2003). [DOI], [ADS], [arXiv:astro-ph/0211209]. | |
188 | Freitag, M., Amaro-Seoane, P. and Kalogera, V., “Stellar Remnants in Galactic Nuclei: Mass Segregation”, Astrophys. J., 649, 91–117 (2006). [DOI], [ADS], [arXiv:astro-ph/0603280]. | |
189 | Furtado, C., Nascimento, J.R., Petrov, A.Y. and Santos, A.F., “Dynamical Chern-Simons modified gravity and Friedmann-Robertson-Walker metric”, arXiv, e-print, (2010). [ADS], [arXiv:1005.1911 [hep-th]]. | |
190 | Futamase, T. and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact
Binaries”, Living Rev. Relativity, 10, lrr-2007-2 (2007). [DOI], [ADS]. URL (accessed 26 July
2013): http://www.livingreviews.org/lrr-2007-2. |
|
191 | Gair, J.R., “The black hole symphony: probing new physics using gravitational waves”, Philos. Trans. R. Soc. London, Ser. A, 366, 4365–4379 (2008). [DOI], [ADS]. | |
192 | Gair, J.R., “Probing black holes at low redshift using LISA EMRI observations”, Class. Quantum Grav., 26, 094034 (2009). [DOI], [ADS], [arXiv:0811.0188 [gr-qc]]. | |
193 | Gair, J.R., Barack, L., Creighton, T., Cutler, C., Larson, S.L., Phinney, E.S. and Vallisneri, M., “Event rate estimates for LISA extreme mass ratio capture sources”, Class. Quantum Grav., 21, S1595–S1606 (2004). [DOI], [ADS], [arXiv:gr-qc/0405137]. | |
194 | Gair, J.R. and Jones, G., “Detecting extreme mass ratio inspiral events in LISA data using the hierarchical algorithm for clusters and ridges (HACR)”, Class. Quantum Grav., 24, 1145–1168 (2007). [DOI], [ADS], [arXiv:gr-qc/0610046]. | |
195 | Gair, J.R., Li, C. and Mandel, I., “Observable properties of orbits in exact bumpy spacetimes”, Phys. Rev. D, 77, 024035 (2008). [DOI], [ADS], [arXiv:0708.0628]. | |
196 | Gair, J.R. and Porter, E.K., “Cosmic swarms: a search for supermassive black holes in the LISA data stream with a hybrid evolutionary algorithm”, Class. Quantum Grav., 26, 225004 (2009). [DOI], [ADS], [arXiv:0903.3733 [gr-qc]]. | |
197 | Gair, J.R and Porter, E.K, “Observing extreme-mass-ratio inspirals with eLISA/NGO”, arXiv, e-print, (2012). [ADS], [arXiv:1210.8066 [gr-qc]]. | |
198 | Gair, J.R., Sesana, A., Berti, E. and Volonteri, M., “Constraining properties of the black hole population using LISA”, Class. Quantum Grav., 28, 094018 (2011). [DOI], [ADS], [arXiv:1009.6172 [gr-qc]]. | |
199 | Gair, J.R., Tang, C. and Volonteri, M., “LISA extreme-mass-ratio inspiral events as probes of the black hole mass function”, Phys. Rev. D, 81, 104014 (2010). [DOI], [ADS], [arXiv:1004.1921 [astro-ph.GA]]. | |
200 | Gair, J.R. and Wen, L., “Detecting extreme mass ratio inspirals with LISA using time–frequency methods: II. Search characterization”, Class. Quantum Grav., 22, S1359–S1371 (2005). [DOI], [ADS], [arXiv:gr-qc/0506116]. | |
201 | Gair, J.R. and Yunes, N., “Approximate waveforms for extreme-mass-ratio inspirals in modified gravity spacetimes”, Phys. Rev. D, 84, 064016 (2011). [DOI], [ADS], [arXiv:1106.6313 [gr-qc]]. | |
202 | Gasperini, M., “Singularity prevention and broken Lorentz symmetry”, Class. Quantum Grav., 4, 485–494 (1987). [DOI], [ADS]. | |
203 | “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for
Gravitational Physics (Albert Einstein Institute). URL (accessed 26 July 2013): http://www.geo600.org/. |
|
204 | Geroch, R., “Multipole Moments. II. Curved Space”, J. Math. Phys., 11, 2580–2588 (1970). [DOI], [ADS]. | |
205 | Ghez, A.M. et al., “Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits”, Astrophys. J., 689, 1044–1062 (2008). [DOI], [ADS], [arXiv:0808.2870]. | |
206 | Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F. and Ott, T., “Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center”, Astrophys. J., 692, 1075–1109 (2009). [DOI], [ADS], [arXiv:0810.4674]. | |
207 | Glampedakis, K. and Babak, S., “Mapping spacetimes with LISA: inspiral of a test body in a ’quasi-Kerr’ field”, Class. Quantum Grav., 23, 4167–4188 (2006). [DOI], [ADS], [arXiv:gr-qc/0510057]. | |
208 | Goldberger, W.D. and Rothstein, I.Z., “Towers of gravitational theories”, Gen. Relativ. Gravit., 38, 1537–1546 (2006). [DOI], [ADS]. | |
209 | Goldhaber, A.S. and Nieto, M.M., “Photon and graviton mass limits”, Rev. Mod. Phys., 82, 939–979 (2010). [DOI], [ADS], [arXiv:0809.1003 [hep-ph]]. | |
210 | Gossan, S., Veitch, J. and Sathyaprakash, B.S., “Bayesian model selection for testing the no-hair theorem with black hole ringdowns”, Phys. Rev. D, 85, 124056 (2012). [DOI], [ADS], [arXiv:1111.5819 [gr-qc]]. | |
211 | Gregory, P.C., Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with ‘Mathematica’ Support, (Cambridge University Press, Cambridge; New York, 2005). [ADS]. | |
212 | Grumiller, D. and Yunes, N., “How do black holes spin in Chern-Simons modified gravity?”, Phys. Rev. D, 77, 044015 (2008). [DOI], [ADS], [arXiv:0711.1868 [gr-qc]]. | |
213 | Guéron, E. and Letelier, P.S., “Chaos in pseudo-Newtonian black holes with halos”, Astron. Astrophys., 368, 716–720 (2001). [DOI], [ADS], [arXiv:astro-ph/0101140]. | |
214 | Guéron, E. and Letelier, P.S., “Geodesic chaos around quadrupolar deformed centers of attraction”, Phys. Rev. E, 66, 046611 (2002). [DOI], [ADS]. | |
215 | GW Community Science Team, Core Team, and GW Science Task Force, Gravitational-Wave
Mission Concept Study Final Report, (NASA, Washington, DC; Greenbelt, MD, 2012). Online
version (accessed 26 July 2013): http://pcos.gsfc.nasa.gov/studies/gravitational-wave-mission.php. |
|
216 | Haehnelt, M.G. and Kauffmann, G., “The correlation between black hole mass and bulge velocity dispersion in hierarchical galaxy formation models”, Mon. Not. R. Astron. Soc., 318, L35–L38 (2000). [DOI], [ADS], [arXiv:astro-ph/0007369]. | |
217 | Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46–52 (1974). [DOI], [ADS]. | |
218 | Harko, T., Kovács, Z. and Lobo, F.S.N., “Thin accretion disk signatures in dynamical Chern-Simons-modified gravity”, Class. Quantum Grav., 27, 105010 (2010). [DOI], [ADS], [arXiv:0909.1267 [gr-qc]]. | |
219 | Harry, G.M., “Advanced LIGO: the next generation of gravitational wave detectors”, Class. Quantum Grav., 27, 084006 (2010). [DOI], [ADS]. | |
220 | Hartle, J.B., “Slowly Rotating Relativistic Stars. I. Equations of Structure”, Astrophys. J., 150, 1005–1029 (1967). [DOI], [ADS]. | |
221 | Hartle, J.B. and Thorne, K.S., “Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars”, Astrophys. J., 153, 807–834 (1968). [DOI], [ADS]. | |
222 | Haugan, M.P. and Lämmerzahl, C., “Principles of Equivalence: Their Role in Gravitation Physics and Experiments That Test Them”, in Lämmerzahl, C., Everitt, C.W.F. and Hehl, F.W., eds., Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, Proceedings of a meeting held at Bad Honnef, Germany, 21 – 7 August 1999, Lecture Notes in Physics, 562, pp. 195–212, (Springer, Berlin; New York, 2001). [ADS], [arXiv:gr-qc/0103067]. | |
223 | Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [ADS], [Google Books]. | |
224 | Hawking, S.W. and Penrose, R., “The Singularities of Gravitational Collapse and Cosmology”, Proc. R. Soc. London, Ser. A, 314, 529–548 (1970). [DOI], [ADS]. | |
225 | Hayama, K. and Nishizawa, A., “Model-independent test of gravity with a network of ground-based gravitational-wave detectors”, Phys. Rev. D, 87, 062003 (2013). [DOI], [ADS], [arXiv:1208.4596 [gr-qc]]. | |
226 | Healy, J., Bode, T., Haas, R., Pazos, E., Laguna, P., Shoemaker, D.M. and Yunes, N., “Late Inspiral and Merger of Binary Black Holes in Scalar-Tensor Theories of Gravity”, arXiv, e-print, (2011). [ADS], [arXiv:1112.3928 [gr-qc]]. | |
227 | Hellings, R.W., “Testing relativistic theories of gravity with spacecraft-Doppler gravity-wave detection”, Phys. Rev. D, 17, 3158–3163 (1978). [DOI], [ADS]. | |
228 | Hellings, R.W. and Downs, G.S., “Upper limits on the isotropic gravitational radiation background from pulsar timing analysis”, Astrophys. J. Lett., 265, L39–L42 (1983). [DOI], [ADS]. | |
229 | Hellings, R., Larson, S.L., Jensen, S., Fish, C., Benacquista, M., Cornish, N.J. and Lang, R.N.,
A Low-Cost, High-Performance Space Gravitational Astronomy Mission, (NASA/Goddard
Space Flight Center, Greenbelt, MD, 2011). Online version (accessed 26 July 2013): http://pcos.gsfc.nasa.gov/studies/gravwave/gravitational-wave-mission-rfis.php. |
|
230 | Hermes, J.J. et al., “Rapid Orbital Decay in the 12.75-minute Binary White Dwarf J0651+2844”, Astrophys. J. Lett., 757, L21 (2012). [DOI], [ADS], [arXiv:1208.5051 [astro-ph.SR]]. | |
231 | Hils, D. and Bender, P.L., “Gravitational Radiation from Helium Cataclysmics”, Astrophys. J., 537, 334–341 (2000). [DOI], [ADS]. | |
232 | Hobbs, G. et al., “The International Pulsar Timing Array project: using pulsars as a gravitational wave detector”, Class. Quantum Grav., 27, 084013 (2010). [DOI], [ADS], [arXiv:0911.5206 [astro-ph.SR]]. | |
233 | Holley-Bockelmann, K., Mihos, J.C., Sigurdsson, S., Hernquist, L. and Norman, C., “The Evolution of Cuspy Triaxial Galaxies Harboring Central Black Holes”, Astrophys. J., 567, 817–827 (2002). [DOI], [ADS], [arXiv:astro-ph/0111029]. | |
234 | Holz, D.E. and Hughes, S.A., “Using Gravitational-Wave Standard Sirens”, Astrophys. J., 629, 15–22 (2005). [DOI], [ADS], [arXiv:astro-ph/0504616]. | |
235 | Hopman, C., “Extreme mass ratio inspiral rates: dependence on the massive black hole mass”, Class. Quantum Grav., 26, 094028 (2009). [DOI], [ADS], [arXiv:0901.1667 [astro-ph.GA]]. | |
236 | Hopman, C., Freitag, M. and Larson, S.L., “Gravitational wave bursts from the Galactic massive black hole”, Mon. Not. R. Astron. Soc., 378, 129–136 (2007). [DOI], [ADS], [arXiv:astro-ph/0612337]. | |
237 | Horbatsch, M.W. and Burgess, C.P., “Cosmic black-hole hair growth and quasar OJ287”, J. Cosmol. Astropart. Phys., 2012(05), 010 (2012). [DOI], [ADS], [arXiv:1111.4009 [gr-qc]]. | |
238 | Huerta, E.A. and Gair, J.R., “Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals”, Phys. Rev. D, 79, 084021 (2009). [DOI], [ADS], [arXiv:0812.4208 [gr-qc]]. | |
239 | Huerta, E.A. and Gair, J.R., “Intermediate-mass-ratio inspirals in the Einstein Telescope. I. Signal-to-noise ratio calculations”, Phys. Rev. D, 83, 044020 (2011). [DOI], [ADS], [arXiv:1009.1985 [gr-qc]]. | |
240 | Huerta, E.A. and Gair, J.R., “Intermediate-mass-ratio inspirals in the Einstein Telescope. II. Parameter estimation errors”, Phys. Rev. D, 83, 044021 (2011). [DOI], [ADS], [arXiv:1011.0421 [gr-qc]]. | |
241 | Hughes, S.A., “Untangling the merger history of massive black holes with LISA”, Mon. Not. R. Astron. Soc., 331, 805–816 (2002). [DOI], [ADS], [arXiv:astro-ph/0108483]. | |
242 | Hughes, S.A. and Blandford, R.D., “Black Hole Mass and Spin Coevolution by Mergers”, Astrophys. J. Lett., 585, L101–L104 (2003). [DOI], [ADS], [arXiv:astro-ph/0208484]. | |
243 | Hughes, S.A. and Menou, K., “Golden Binary Gravitational-Wave Sources: Robust Probes of Strong-Field Gravity”, Astrophys. J., 623, 689–699 (2005). [DOI], [ADS], [arXiv:astro-ph/0410148]. | |
244 | Huwyler, C., Klein, A. and Jetzer, P., “Testing general relativity with LISA including spin precession and higher harmonics in the waveform”, Phys. Rev. D, 86, 084028 (2012). [DOI], [ADS], [arXiv:1108.1826 [gr-qc]]. | |
245 | Iben Jr, I. and Tutukov, A.V., “The evolution of low-mass close binaries influenced by the radiation of gravitational waves and by a magnetic stellar wind”, Astrophys. J., 284, 719–744 (1984). [DOI], [ADS]. | |
246 | Iben Jr, I. and Tutukov, A.V., “On the number-mass distribution of degenerate dwarfs produced by interacting binaries and evidence for mergers of low-mass helium dwarfs”, Astrophys. J., 311, 753–761 (1986). [DOI], [ADS]. | |
247 | Islam, R.R., Taylor, J.E. and Silk, J., “Massive black hole remnants of the first stars in galactic haloes”, Mon. Not. R. Astron. Soc., 340, 647–656 (2003). [DOI], [ADS], [arXiv:astro-ph/0208189]. | |
248 | Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev., 164, 1776–1779 (1967). [DOI], [ADS]. | |
249 | Jackiw, R. and Pi, S.-Y., “Chern-Simons modification of general relativity”, Phys. Rev. D, 68, 104012 (2003). [DOI], [ADS], [arXiv:gr-qc/0308071]. | |
250 | Jacobson, T., “Einstein-æther gravity: a status report”, in From Quantum to Emergent
Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science,
PoS(QG-Ph)020, (SISSA, Trieste, 2008). [ADS], [arXiv:0801.1547 [gr-qc]]. URL (accessed 1
August 2013): http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=43. |
|
251 | Jaranowski, P. and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample
Applications: The Gaussian Case”, Living Rev. Relativity, 15, lrr-2012-4 (2012). [DOI], [ADS].
URL (accessed 26 July 2013): http://www.livingreviews.org/lrr-2012-4. |
|
252 | Jennrich, O., “LISA technology and instrumentation”, Class. Quantum Grav., 26, 153001 (2009). [DOI], [arXiv:0906.2901]. | |
253 | Jones, D.I., “Bounding the Mass of the Graviton Using Eccentric Binaries”, Astrophys. J. Lett., 618, L115–L118 (2005). [DOI], [ADS], [arXiv:gr-qc/0411123]. | |
254 | “KAGRA: Large-scale Cryogenic Gravitational Wave Telescope Project”, project homepage,
Institute for Cosmic Ray Research (ICRR). URL (accessed 26 July 2013): http://gwcenter.icrr.u-tokyo.ac.jp/en. |
|
255 | Kamaretsos, I., Hannam, M., Husa, S. and Sathyaprakash, B.S., “Black-hole hair loss: Learning about binary progenitors from ringdown signals”, Phys. Rev. D, 85, 024018 (2012). [DOI], [ADS], [arXiv:1107.0854 [gr-qc]]. | |
256 | Kawamura, S. et al. (DECIGO Collaboration), “The Japanese space gravitational wave antenna – DECIGO”, Class. Quantum Grav., 23, S125–S131 (2006). [DOI], [ADS]. | |
257 | Kawamura, S. et al. (DECIGO Collaboration), “The Japanese space gravitational wave antenna: DECIGO”, Class. Quantum Grav., 28, 094011 (2011). [DOI], [ADS]. | |
258 | Kennefick, D., Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves, (Princeton University Press, Princeton; Woodstock, UK, 2007). [Google Books]. | |
259 | Keppel, D. and Ajith, P., “Constraining the mass of the graviton using coalescing black-hole binaries”, Phys. Rev. D, 82, 122001 (2010). [DOI], [ADS], [arXiv:1004.0284 [gr-qc]]. | |
260 | Kerr, R.P., “Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics”, Phys. Rev. Lett., 11, 237–238 (1963). [DOI], [ADS]. | |
261 | Kesden, M., Gair, J.R. and Kamionkowski, M., “Gravitational-wave signature of an inspiral into a supermassive horizonless object”, Phys. Rev. D, 71, 044015 (2005). [DOI], [ADS], [arXiv:astro-ph/0411478]. | |
262 | Khoury, J. and Weltman, A., “Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space”, Phys. Rev. Lett., 93, 171104 (2004). [DOI], [ADS], [arXiv:astro-ph/0309300]. | |
263 | Kidder, L.E., Will, C.M. and Wiseman, A.G., “Coalescing binary systems of compact objects to (post)5∕2-Newtonian order. III. Transition from inspiral to plunge”, Phys. Rev. D, 47, 3281–3291 (1993). [DOI], [ADS]. | |
264 | Kim, H. and Kim, W.-T., “Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium”, Astrophys. J., 665, 432–444 (2007). [DOI], [ADS], [arXiv:0705.0084]. | |
265 | Kleihaus, B., Kunz, J., Sood, A. and Wirschins, M., “Sequences of globally regular and black hole solutions in SU(4) Einstein-Yang-Mills theory”, Phys. Rev. D, 58, 084006 (1998). [DOI], [ADS], [arXiv:hep-th/9802143]. | |
266 | Klein, A., Jetzer, P. and Sereno, M., “Parameter estimation for coalescing massive binary black holes with LISA using the full 2-post-Newtonian gravitational waveform and spin-orbit precession”, Phys. Rev. D, 80, 064027 (2009). [DOI], [ADS], [arXiv:0907.3318 [astro-ph.CO]]. | |
267 | Kocsis, B., Haiman, Z. and Menou, K., “Premerger Localization of Gravitational Wave Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart”, Astrophys. J., 684, 870–887 (2008). [DOI], [ADS], [arXiv:0712.1144]. | |
268 | Kocsis, B., Yunes, N. and Loeb, A., “Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks”, Phys. Rev. D, 84, 024032 (2011). [DOI], [ADS], [arXiv:1104.2322 [astro-ph.GA]]. | |
269 | Kodama, H. and Yoshino, H., “Axiverse and Black Hole”, Int. J. Mod. Phys.: Conf. Ser., 7, 84–115 (2012). [DOI], [ADS], [arXiv:1108.1365 [hep-th]]. | |
270 | Kokkotas, K. and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev.
Relativity, 2, lrr-1999-2 (1999). [DOI], [ADS], [arXiv:gr-qc/9909058]. URL (accessed 26 July
2013): http://www.livingreviews.org/lrr-1999-2. |
|
271 | Komatsu, E. et al. (WMAP Collaboration), “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation”, Astrophys. J. Suppl. Ser., 192, 18 (2011). [DOI], [ADS], [arXiv:1001.4538 [astro-ph.CO]]. | |
272 | Konno, K., Matsuyama, T. and Tanda, S., “Rotating Black Hole in Extended Chern-Simons Modified Gravity”, Prog. Theor. Phys., 122, 561–568 (2009). [DOI], [ADS], [arXiv:0902.4767 [gr-qc]]. | |
273 | Krolik, J.H., Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment, Princeton Series in Astrophysics, (Princeton University Press, Princeton, NJ, 1999). [Google Books]. | |
274 | Kuroyanagi, S., Nakayama, K. and Saito, S., “Prospects for determination of thermal history after inflation with future gravitational wave detectors”, Phys. Rev. D, 84, 123513 (2011). [DOI], [ADS], [arXiv:1110.4169 [astro-ph.CO]]. | |
275 | Laguna, P., “Probing space-time through numerical simulations”, in Ashtekar, A., ed., 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, pp. 152–174, (World Scientific, Singapore; Hackensack, NJ, 2005). [ADS], [Google Books]. | |
276 | Lamoreaux, S.K., Jacobs, J.P., Heckel, B.R., Raab, F.J. and Fortson, E.N., “New limits on spatial anisotropy from optically-pumped 201Hg and 199Hg”, Phys. Rev. Lett., 57, 3125–3128 (1986). [DOI], [ADS]. | |
277 | Larson, S.L., “Online Sensitivity Curve Generator”, project homepage, Caltech. URL (accessed
26 July 2013): http://www.srl.caltech.edu/~shane/sensitivity/. |
|
278 | Larson, S.L. and Finn, L.S., “The resolving power of LISA: comparing techniques for binary analysis”, in Merkowitz, S.M. and Livas, J.C., eds., Laser Interferometer Space Antenna: 6th International LISA Symposium, Proceedings of the 6th International LISA Symposium, Greenbelt, MD, USA, 19 – 23 June 2006, AIP Conference Series, 873, pp. 415–421, (American Institute of Physics, Melville, NY, 2006). [DOI], [ADS]. | |
279 | Larson, S.L. and Hiscock, W.A., “Using binary stars to bound the mass of the graviton”, Phys. Rev. D, 61, 104008 (2000). [DOI], [ADS], [arXiv:gr-qc/9912102]. | |
280 | Lee, K.J., Jenet, F.A. and Price, R.H., “Pulsar Timing as a Probe of Non-Einsteinian Polarizations of Gravitational Waves”, Astrophys. J., 685, 1304–1319 (2008). [DOI], [ADS]. | |
281 | Lee, K., Jenet, F.A., Price, R.H., Wex, N. and Kramer, M., “Detecting Massive Gravitons Using Pulsar Timing Arrays”, Astrophys. J., 722, 1589–1597 (2010). [DOI], [ADS], [arXiv:1008.2561 [astro-ph.HE]]. | |
282 | Letelier, P.S. and Vieira, W.M., “Chaos in black holes surrounded by gravitational waves”, Class. Quantum Grav., 14, 1249–1257 (1997). [DOI], [ADS], [arXiv:gr-qc/9706025]. | |
283 | Li, C. and Lovelace, G., “A generalization of Ryan’s theorem: probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals”, Phys. Rev. D, 77, 064022 (2008). [DOI], [ADS], [arXiv:gr-qc/0702146]. | |
284 | Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence”, Phys. Rev. D, 85, 082003 (2012). [DOI], [ADS], [arXiv:1110.0530 [gr-qc]]. | |
285 | Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations”, J. Phys.: Conf. Ser., 363, 012028 (2012). [DOI], [ADS], [arXiv:1111.5274 [gr-qc]]. | |
286 | Lightman, A.P. and Eardley, D.M., “Black Holes in Binary Systems: Instability of Disk Accretion”, Astrophys. J. Lett., 187, L1 (1974). [DOI], [ADS]. | |
287 | Lightman, A.P. and Lee, D.L., “New Two-Metric Theory of Gravity with Prior Geometry”, Phys. Rev. D, 8, 3293–3302 (1973). [DOI], [ADS]. | |
288 | “LIGO - Laser Interferometer Gravitational Wave Observatory”, project homepage, California
Institute of Technology. URL (accessed 26 July 2013): http://www.ligo.caltech.edu. |
|
289 | Lincoln, C.W. and Will, C.M., “Coalescing binary systems of compact objects to (post)5∕2-Newtonian order: Late-time evolution and gravitational-radiation emission”, Phys. Rev. D, 42, 1123–1143 (1990). [DOI], [ADS]. | |
290 | Littenberg, T.B., “Detection pipeline for Galactic binaries in LISA data”, Phys. Rev. D, 84, 063009 (2011). [DOI], [ADS], [arXiv:1106.6355 [gr-qc]]. | |
291 | Littenberg, T.B. and Cornish, N.J., “Bayesian approach to the detection problem in gravitational wave astronomy”, Phys. Rev. D, 80, 063007 (2009). [DOI], [ADS], [arXiv:0902.0368 [gr-qc]]. | |
292 | Lobo, J.A., “Spherical GW detectors and geometry”, in Coccia, E., Veneziano, G. and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1 – 4 July, 1997, Edoardo Amaldi Foundation Series, pp. 168–179, (World Scientific, Singapore, 1998). [ADS]. | |
293 | Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8 (2008).
[DOI], [ADS], [arXiv:0811.0762]. URL (accessed 26 July 2013): http://www.livingreviews.org/lrr-2008-8. |
|
294 | Lukes-Gerakopoulos, G., Apostolatos, T.A. and Contopoulos, G., “Observable signature of a background deviating from the Kerr metric”, Phys. Rev. D, 81, 124005 (2010). [DOI], [ADS], [arXiv:1003.3120 [gr-qc]]. | |
295 | Luna, M. and Sintes, A.M., “Parameter estimation of compact binaries using the inspiral and ringdown waveforms”, Class. Quantum Grav., 23, 3763–3782 (2006). [DOI], [ADS], [arXiv:gr-qc/0601072]. | |
296 | Lynden-Bell, D. and Rees, M.J., “On quasars, dust and the galactic centre”, Mon. Not. R. Astron. Soc., 152, 461 (1971). [ADS]. | |
297 | Macedo, C.F.B., Pani, P., Cardoso, V. and Crispino, L.C.B., “Into the lair: gravitational-wave signatures of dark matter”, Astrophys. J., 774, 48 (2013). [DOI], [ADS], [arXiv:1302.2646 [gr-qc]]. | |
298 | Madau, P. and Rees, M.J., “Massive Black Holes as Population III Remnants”, Astrophys. J. Lett., 551, L27–L30 (2001). [DOI], [ADS], [arXiv:astro-ph/0101223]. | |
299 | Maggiore, M., Gravitational Waves. Vol. 1: Theory and Experiments, (Oxford University Press, Oxford; New York, 2008). | |
300 | Maggiore, M. and Nicolis, A., “Detection strategies for scalar gravitational waves with interferometers and resonant spheres”, Phys. Rev. D, 62, 024004 (2000). [DOI], [ADS], [arXiv:gr-qc/9907055]. | |
301 | Magueijo, J. and Mozaffari, A., “Case for testing modified Newtonian dynamics using LISA pathfinder”, Phys. Rev. D, 85, 043527 (2012). [DOI], [ADS], [arXiv:1107.1075 [astro-ph.CO]]. | |
302 | Mandel, I., Brown, D.A., Gair, J.R. and Miller, M.C., “Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO”, Astrophys. J., 681, 1431–1447 (2008). [DOI], [ADS], [arXiv:0705.0285]. | |
303 | Manko, V.S. and Novikov, I.D., “Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments”, Class. Quantum Grav., 9, 2477–2487 (1992). [DOI], [ADS]. | |
304 | McKenzie, K. et al., LAGRANGE: A Space-Based Gravitational-Wave Detector with
Geometric Suppression of Spacecraft Noise, (NASA/Goddard Space Flight Center, Greenbelt,
MD, 2011). Online version (accessed 26 July 2013): http://pcos.gsfc.nasa.gov/studies/gravwave/gravitational-wave-mission-rfis.php. |
|
305 | McNamara, P., Vitale, S. and Danzmann, K. (LISA Pathfinder Science Working Team), “LISA Pathfinder”, Class. Quantum Grav., 25, 114034 (2008). [DOI], [ADS]. | |
306 | McWilliams, S.T., “Constraining the Braneworld with Gravitational Wave Observations”, Phys. Rev. Lett., 104, 141601 (2010). [DOI], [ADS], [arXiv:0912.4744 [gr-qc]]. | |
307 | McWilliams, S.T., Lang, R.N., Baker, J.G. and Thorpe, J.I., “Sky localization of complete inspiral-merger-ringdown signals for nonspinning massive black hole binaries”, Phys. Rev. D, 84, 064003 (2011). [DOI], [ADS], [arXiv:1104.5650 [gr-qc]]. | |
308 | Menou, K., Haiman, Z. and Narayanan, V.K., “The Merger History of Supermassive Black Holes in Galaxies”, Astrophys. J., 558, 535–542 (2001). [DOI], [ADS], [arXiv:astro-ph/0101196]. | |
309 | Merkowitz, S.M., “Tests of Gravity Using Lunar Laser Ranging”, Living Rev. Relativity, 13,
lrr-2010-7 (2010). [DOI], [ADS]. URL (accessed 26 July 2013): http://www.livingreviews.org/lrr-2010-7. |
|
310 | Merritt, D., Alexander, T., Mikkola, S. and Will, C.M., “Stellar dynamics of extreme-mass-ratio inspirals”, Phys. Rev. D, 84, 044024 (2011). [DOI], [ADS], [arXiv:1102.3180 [astro-ph.CO]]. | |
311 | Mignemi, S. and Stewart, N.R., “Dilaton-axion hair for slowly rotating Kerr black holes”, Phys. Lett. B, 298, 299–304 (1993). [DOI], [ADS], [arXiv:hep-th/9206018]. | |
312 | Miller, M.C., Freitag, M., Hamilton, D.P. and Lauburg, V.M., “Binary Encounters with Supermassive Black Holes: Zero-Eccentricity LISA Events”, Astrophys. J. Lett., 631, L117–L120 (2005). [DOI], [ADS], [arXiv:astro-ph/0507133]. | |
313 | Miralda-Escudé, J. and Gould, A., “A Cluster of Black Holes at the Galactic Center”, Astrophys. J., 545, 847–853 (2000). [DOI], [ADS], [arXiv:astro-ph/0003269]. | |
314 | Mirshekari, S., Yunes, N. and Will, C.M., “Constraining Lorentz-violating, modified dispersion relations with gravitational waves”, Phys. Rev. D, 85, 024041 (2012). [DOI], [ADS], [arXiv:1110.2720 [gr-qc]]. | |
315 | Mishra, C.K., Arun, K.G., Iyer, B.R. and Sathyaprakash, B.S., “Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope”, Phys. Rev. D, 82, 064010 (2010). [DOI], [ADS], [arXiv:1005.0304 [gr-qc]]. | |
316 | Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P. and Inoue, M., “Evidence for a Black-Hole from High Rotation Velocities in a Sub-Parsec Region of NGC4258”, Nature, 373, 127–129 (1995). [DOI], [ADS]. | |
317 | Moffat, J.W., “Scalar-tensor-vector gravity theory”, J. Cosmol. Astropart. Phys., 2006(03), 004 (2006). [DOI], [ADS], [arXiv:gr-qc/0506021]. | |
318 | Moffat, J.W. and Toth, V.T., “Modified Gravity: Cosmology without dark matter or Einstein’s cosmological constant”, arXiv, e-print, (2007). [ADS], [arXiv:0710.0364]. | |
319 | Moffat, J.W. and Toth, V.T., “Testing Modified Gravity with Globular Cluster Velocity Dispersions”, Astrophys. J., 680, 1158–1161 (2008). [DOI], [ADS], [arXiv:0708.1935]. | |
320 | Molina, C., Pani, P., Cardoso, V. and Gualtieri, L., “Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity”, Phys. Rev. D, 81, 124021 (2010). [DOI], [ADS], [arXiv:1004.4007 [gr-qc]]. | |
321 | Moore, C.J., Cole, R.H. and Berry, C.P.L., “Gravitational Wave Sensitivity Curve Plotter”,
project homepage, University of Cambridge. URL (accessed 26 July 2013): http://www.ast.cam.ac.uk/~rhc26/sources/. |
|
322 | Moore, T.A. and Hellings, R.W., “Angular resolution of space-based gravitational wave detectors”, Phys. Rev. D, 65, 062001 (2002). [DOI], [ADS], [arXiv:gr-qc/9910116]. | |
323 | Motohashi, H. and Suyama, T., “Black hole perturbation in nondynamical and dynamical Chern-Simons gravity”, Phys. Rev. D, 85, 044054 (2012). [DOI], [ADS], [arXiv:1110.6241 [gr-qc]]. | |
324 | Nakao, K.-I., Harada, T., Shibata, M., Kawamura, S. and Nakamura, T., “Response of interferometric detectors to scalar gravitational waves”, Phys. Rev. D, 63, 082001 (2001). [DOI], [ADS], [arXiv:gr-qc/0006079]. | |
325 | Nakayama, K., Saito, S., Suwa, Y. and Yokoyama, J., “Space-based gravitational-wave detectors can determine the thermal history of the early Universe”, Phys. Rev. D, 77, 124001 (2008). [DOI], [ADS], [arXiv:0802.2452 [hep-ph]]. | |
326 | Narayan, R., “Hydrodynamic Drag on a Compact Star Orbiting a Supermassive Black Hole”, Astrophys. J., 536, 663–667 (2000). [DOI], [ADS], [arXiv:astro-ph/9907328]. | |
327 | Nelemans, G., “LISA Verification Binaries”, web interface to database, Radboud University.
URL (accessed 26 July 2013): http://www.astro.ru.nl/~nelemans/dokuwiki/doku.php?id=verification_binaries:intro. |
|
328 | Nelemans, G., Portegies Zwart, S.F., Verbunt, F. and Yungelson, L.R., “Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars”, Astron. Astrophys., 368, 939–949 (2001). [DOI], [ADS], [arXiv:astro-ph/0101123]. | |
329 | Nelemans, G., Yungelson, L.R. and Portegies Zwart, S.F., “The gravitational wave signal from the Galactic disk population of binaries containing two compact objects”, Astron. Astrophys., 375, 890–898 (2001). [DOI], [ADS], [arXiv:astro-ph/0105221]. | |
330 | Nelemans, G., Yungelson, L.R., Portegies Zwart, S.F. and Verbunt, F., “Population synthesis for double white dwarfs. I. Close detached systems”, Astron. Astrophys., 365, 491–507 (2001). [DOI], [ADS], [arXiv:astro-ph/0010457]. | |
331 | Nishizawa, A., Taruya, A., Hayama, K., Kawamura, S. and Sakagami, M.-A., “Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers”, Phys. Rev. D, 79, 082002 (2009). [DOI], [ADS], [arXiv:0903.0528 [astro-ph.CO]]. | |
332 | Nishizawa, A., Taruya, A. and Kawamura, S., “Cosmological test of gravity with polarizations of stochastic gravitational waves around 0.1–1 Hz”, Phys. Rev. D, 81, 104043 (2010). [DOI], [ADS], [arXiv:0911.0525 [gr-qc]]. | |
333 | Nishizawa, A., Taruya, A. and Saito, S., “Tracing the redshift evolution of Hubble parameter with gravitational-wave standard sirens”, Phys. Rev. D, 83, 084045 (2011). [DOI], [ADS], [arXiv:1011.5000 [astro-ph.CO]]. | |
334 | Nishizawa, A., Yagi, K., Taruya, A. and Tanaka, T., “Gravitational-wave standard siren without redshift identification”, J. Phys.: Conf. Ser., 363, 012052 (2012). [DOI], [ADS], [arXiv:1204.2877 [astro-ph.CO]]. | |
335 | Nissanke, S., Vallisneri, M., Nelemans, G. and Prince, T.A., “Gravitational-wave Emission from Compact Galactic Binaries”, Astrophys. J., 758, 131 (2012). [DOI], [ADS], [arXiv:1201.4613 [astro-ph.GA]]. | |
336 | Nojiri, S. and Odintsov, S.D., “Introduction to Modified Gravity and Gravitational Alternative for Dark Energy”, Int. J. Geom. Meth. Mod. Phys., 4, 115–145 (2007). [DOI], [hep-th/0601213]. | |
337 | Nollert, H.-P., “Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars”, Class. Quantum Grav., 16, 159 (1999). [DOI], [ADS]. | |
338 | Norton, J., “What was Einstein’s principle of equivalence?”, in Howard, D. and Stachel, J., eds., Einstein and the History of General Relativity, Based on the proceedings of the 1986 Osgood Hill Conference, North Andover, Massachusetts, 8 – 11 May, Einstein Studies, 1, pp. 5–47, (Birkhäuser, Boston; Basel, 1989). [ADS]. | |
339 | Norton, J.D., “General covariance and the foundations of general relativity: eight decades of dispute”, Rep. Prog. Phys., 56, 791–858 (1993). [DOI], [ADS]. | |
340 | Okawara, H., Yamada, K. and Asada, H., “Possible Daily and Seasonal Variations in Quantum Interference Induced by Chern-Simons Gravity”, Phys. Rev. Lett., 109, 231101 (2012). [DOI], [ADS], [arXiv:1210.4628 [gr-qc]]. | |
341 | Oppenheimer, J.R. and Snyder, H., “On Continued Gravitational Contraction”, Phys. Rev., 56, 455–459 (1939). [DOI], [ADS]. | |
342 | Pai, A. and Arun, K.G., “Singular value decomposition in parametrized tests of post-Newtonian theory”, Class. Quantum Grav., 30, 025011 (2013). [DOI], [ADS], [arXiv:1207.1943 [gr-qc]]. | |
343 | Paik, H.J., “Response of a disk antenna to scalar and tensor gravitational waves”, Phys. Rev. D, 15, 409–415 (1977). [DOI], [ADS]. | |
344 | Pan, Y., Buonanno, A., Boyle, M., Buchman, L.T., Kidder, L.E., Pfeiffer, H.P. and Scheel, M.A., “Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism”, Phys. Rev. D, 84, 124052 (2011). [DOI], [ADS], [arXiv:1106.1021 [gr-qc]]. | |
345 | Pan, Y., Buonanno, A., Buchman, L.T., Chu, T., Kidder, L.E., Pfeiffer, H.P. and Scheel, M.A., “Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonprecessing, spinning, equal-mass black holes”, Phys. Rev. D, 81, 084041 (2010). [DOI], [ADS], [arXiv:0912.3466 [gr-qc]]. | |
346 | Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the absence of an event horizon: Nonradial oscillations of a thin-shell gravastar”, Phys. Rev. D, 80, 124047 (2009). [DOI], [ADS], [arXiv:0909.0287 [gr-qc]]. | |
347 | Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the absence of an event horizon. II. Extreme mass ratio inspirals in the spacetime of a thin-shell gravastar”, Phys. Rev. D, 81, 084011 (2010). [DOI], [ADS], [arXiv:1001.3031 [gr-qc]]. | |
348 | Pani, P., Cardoso, V. and Gualtieri, L., “Gravitational waves from extreme mass-ratio inspirals in dynamical Chern-Simons gravity”, Phys. Rev. D, 83, 104048 (2011). [DOI], [ADS], [arXiv:1104.1183 [gr-qc]]. | |
349 | Pani, P., Macedo, C.F.B., Crispino, L.C.B. and Cardoso, V., “Slowly rotating black holes in alternative theories of gravity”, Phys. Rev. D, 84, 087501 (2011). [DOI], [ADS], [arXiv:1109.3996 [gr-qc]]. | |
350 | Pauli, W. and Fierz, M., “Über relativistische Feldgleichungen von Teilchen mit beliebigem Spin im elektromagnetischen Feld”, Helv. Phys. Acta, 12, 297–300 (1939). | |
351 | Penrose, R., “Gravitational Collapse and Space-Time Singularities”, Phys. Rev. Lett., 14, 57–59 (1965). [DOI], [ADS]. | |
352 | Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276 (1969). [ADS]. | |
353 | Peters, P.C., “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev., 136, B1224–B1232 (1964). [DOI], [ADS]. | |
354 | Peters, P.C. and Mathews, J., “Gravitational Radiation from Point Masses in a Keplerian Orbit”, Phys. Rev., 131, 435–440 (1963). [DOI], [ADS]. | |
355 | Petiteau, A., Babak, S. and Sesana, A., “Constraining the Dark Energy Equation of State Using LISA Observations of Spinning Massive Black Hole Binaries”, Astrophys. J., 732, 82 (2011). [DOI], [ADS], [arXiv:1102.0769 [astro-ph.CO]]. | |
356 | Petiteau, A., Shang, Y., Babak, S. and Feroz, F., “Search for spinning black hole binaries in mock LISA data using a genetic algorithm”, Phys. Rev. D, 81, 104016 (2010). [DOI], [ADS], [arXiv:1001.5380 [gr-qc]]. | |
357 | Phinney, E.S. et al., The Big Bang Observer: direct detection of gravitational waves from the birth of the Universe to the present, (NASA, Washington, DC, 2003). | |
358 | Piran, T., “The role of viscosity and cooling mechanisms in the stability of accretion disks”, Astrophys. J., 221, 652–660 (1978). [DOI], [ADS]. | |
359 | Plowman, J.E., Hellings, R.W. and Tsuruta, S., “Constraining the black hole mass spectrum with gravitational wave observations – II. Direct comparison of detailed models”, Mon. Not. R. Astron. Soc., 415, 333–352 (2011). [DOI], [ADS], [arXiv:1009.0765 [astro-ph.CO]]. | |
360 | Plowman, J.E., Jacobs, D.C., Hellings, R.W., Larson, S.L. and Tsuruta, S., “Constraining the black hole mass spectrum with gravitational wave observations - I. The error kernel”, Mon. Not. R. Astron. Soc., 401, 2706–2714 (2010). [DOI], [ADS], [arXiv:0903.2059 [astro-ph.CO]]. | |
361 | Poisson, E., A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, (Cambridge University Press, Cambridge; New York, 2004). [ADS], [Google Books]. | |
362 | Poisson, E., Pound, A. and Vega, I., “The Motion of Point Particles in Curved Spacetime”,
Living Rev. Relativity, 14, lrr-2011-7 (2011). [DOI], [ADS], [arXiv:1102.0529 [gr-qc]]. URL
(accessed 26 July 2013): http://www.livingreviews.org/lrr-2011-7. |
|
363 | Polchinski, J., String Theory. Vol. 2: Superstring Theory and Beyond, Cambridge Monographs on Mathematical Physics, 2, (Cambridge University Press, Cambridge; New York, 1998). [Google Books]. | |
364 | Poon, M.Y. and Merritt, D., “Triaxial Black Hole Nuclei”, Astrophys. J. Lett., 568, L89–L92 (2002). [DOI], [ADS], [arXiv:astro-ph/0111020]. | |
365 | Porter, E.K. and Cornish, N.J., “Effect of higher harmonic corrections on the detection of massive black hole binaries with LISA”, Phys. Rev. D, 78, 064005 (2008). [DOI], [ADS], [arXiv:0804.0332 [gr-qc]]. | |
366 | Pound, A., “Second-Order Gravitational Self-Force”, Phys. Rev. Lett., 109, 051101 (2012). [DOI], [ADS], [arXiv:1201.5089 [gr-qc]]. | |
367 | Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101 (2005). [DOI], [ADS], [arXiv:gr-qc/0507014]. | |
368 | Pretorius, F., “Binary Black Hole Coalescence”, in Colpi, M., Casella, P., Gorini, V., Moschella, U. and Possenti, A., eds., Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, Astrophysics and Space Science Library, 359, pp. 305–369, (Springer, Berlin; New York, 2009). [arXiv:0710.1338], [Google Books]. | |
369 | Prince, T.A., Tinto, M., Larson, S.L. and Armstrong, J.W., “LISA optimal sensitivity”, Phys. Rev. D, 66, 122002 (2002). [DOI], [ADS], [arXiv:gr-qc/0209039]. | |
370 | Prince, T.A. et al., LISA: Probing the Universe with Gravitational Waves, LISA-LIST-RP-436,
(National Research Council, Washington, DC, 2009). Online version (accessed 1 August 2013):
http://list.caltech.edu/mission_documents. Science case document (March 2009). |
|
371 | Psaltis, D., “Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic
Spectrum”, Living Rev. Relativity, 11, lrr-2008-9 (2008). [DOI], [ADS], [arXiv:0806.1531]. URL
(accessed 26 July 2013): http://www.livingreviews.org/lrr-2008-9. |
|
372 | Psaltis, D., Perrodin, D., Dienes, K.R. and Mocioiu, I., “Kerr Black Holes Are Not Unique to General Relativity”, Phys. Rev. Lett., 100, 091101 (2008). [DOI], [ADS], [arXiv:0710.4564]. | |
373 | Randall, L. and Sundrum, R., “An Alternative to Compactification”, Phys. Rev. Lett., 83, 4690–4693 (1999). [DOI], [ADS], [arXiv:hep-th/9906064]. | |
374 | Rastall, P., “The Newtonian theory of gravitation and its generalization”, Can. J. Phys., 57, 944–973 (1979). [DOI], [ADS]. | |
375 | Rauch, K.P. and Ingalls, B., “Resonant tidal disruption in galactic nuclei”, Mon. Not. R. Astron. Soc., 299, 1231–1241 (1998). [DOI], [ADS], [arXiv:astro-ph/9710288]. | |
376 | Rauch, K.P. and Tremaine, S., “Resonant relaxation in stellar systems”, New Astronomy, 1, 149–170 (1996). [DOI], [ADS], [arXiv:astro-ph/9603018]. | |
377 | Rees, M.J., “Black Hole Models for Active Galactic Nuclei”, Annu. Rev. Astron. Astrophys., 22, 471–506 (1984). [DOI], [ADS]. | |
378 | Reynaud, S., Salomon, C. and Wolf, P., “Testing General Relativity with Atomic Clocks”, Space Sci. Rev., 148, 233–247 (2009). [DOI], [ADS], [arXiv:0903.1166 [quant-ph]]. | |
379 | Robinson, D.C., “Uniqueness of the Kerr black hole”, Phys. Rev. Lett., 34, 905–906 (1975). [DOI], [ADS]. | |
380 | Roedig, C. and Sesana, A., “Origin and Implications of high eccentricities in massive black hole binaries at sub-pc scales”, J. Phys.: Conf. Ser., 363, 012035 (2012). [DOI], [ADS], [arXiv:1111.3742 [astro-ph.CO]]. | |
381 | Rosen, N., “Theory of Gravitation”, Phys. Rev. D, 3, 2317–2319 (1971). [DOI], [ADS]. | |
382 | Rosen, N., “A bi-metric theory of gravitation”, Gen. Relativ. Gravit., 4, 435–447 (1973). [DOI], [ADS]. | |
383 | Rosen, N., “A theory of gravitation”, Ann. Phys. (N.Y.), 84, 455–473 (1974). [DOI], [ADS]. | |
384 | Rosen, N., “A bi-metric theory of gravitation. II.”, Gen. Relativ. Gravit., 6, 259–268 (1975). [DOI], [ADS]. | |
385 | Rubbo, L.J., Holley-Bockelmann, K. and Finn, L.S., “Event Rate for Extreme Mass Ratio Burst Signals in the Laser Interferometer Space Antenna Band”, Astrophys. J. Lett., 649, L25–L28 (2006). [DOI], [ADS]. | |
386 | Ruiter, A.J., Belczynski, K., Benacquista, M., Larson, S.L. and Williams, G., “The LISA Gravitational Wave Foreground: A Study of Double White Dwarfs”, Astrophys. J., 717, 1006–1021 (2010). [DOI], [ADS], [arXiv:0705.3272]. | |
387 | Ryan, F.D., “Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments”, Phys. Rev. D, 52, 5707–5718 (1995). [DOI], [ADS]. | |
388 | Ryan, F.D., “Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral”, Phys. Rev. D, 56, 1845–1855 (1997). [DOI], [ADS]. | |
389 | Ryan, F.D., “Spinning boson stars with large self-interaction”, Phys. Rev. D, 55, 6081–6091 (1997). [DOI], [ADS]. | |
390 | Saito, R. and Yokoyama, J., “Gravitational-Wave Background as a Probe of the Primordial Black-Hole Abundance”, Phys. Rev. Lett., 102, 161101 (2009). [DOI], [ADS], [arXiv:0812.4339]. | |
391 | Sakimoto, P.J. and Coroniti, F.V., “Accretion disk models for QSOs and active galactic nuclei: The role of magnetic viscosity”, Astrophys. J., 247, 19–31 (1981). [DOI], [ADS]. | |
392 | Sanders, R.H., “A tensor-vector-scalar framework for modified dynamics and cosmic dark matter”, Mon. Not. R. Astron. Soc., 363, 459–468 (2005). [DOI], [ADS], [arXiv:astro-ph/0502222]. | |
393 | Santamaría, L. et al., “Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries”, Phys. Rev. D, 82, 064016 (2010). [DOI], [ADS], [arXiv:1005.3306 [gr-qc]]. | |
394 | Sasaki, M. and Tagoshi, H., “Analytic Black Hole Perturbation Approach to Gravitational
Radiation”, Living Rev. Relativity, 6, lrr-2003-6 (2003). [DOI], [ADS], [arXiv:gr-qc/0306120].
URL (accessed 26 July 2013): http://www.livingreviews.org/lrr-2003-6. |
|
395 | Sathyaprakash, B.S. and Schutz, B.F., “Physics, Astrophysics and Cosmology with
Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2 (2009). [DOI], [ADS],
[arXiv:0903.0338 [gr-qc]]. URL (accessed 26 July 2013): http://www.livingreviews.org/lrr-2009-2. |
|
396 | Sawado, N., Shiiki, N., Maeda, K.-I. and Torii, T., “Regular and Black Hole Skyrmions with Axisymmetry”, Gen. Relativ. Gravit., 36, 1361–1371 (2004). [DOI], [ADS], [arXiv:gr-qc/0401020]. | |
397 | Scharre, P.D. and Will, C.M., “Testing scalar-tensor gravity using space gravitational-wave interferometers”, Phys. Rev. D, 65, 042002 (2002). [DOI], [ADS], [arXiv:gr-qc/0109044]. | |
398 | Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D. and Pfeiffer, H.P., “High-accuracy waveforms for binary black hole inspiral, merger, and ringdown”, Phys. Rev. D, 79, 024003 (2009). [DOI], [ADS], [arXiv:0810.1767 [gr-qc]]. | |
399 | Schlamminger, S., Choi, K.-Y., Wagner, T.A., Gundlach, J.H. and Adelberger, E.G., “Test of the Equivalence Principle Using a Rotating Torsion Balance”, Phys. Rev. Lett., 100, 041101 (2008). [DOI], [ADS], [arXiv:0712.0607 [gr-qc]]. | |
400 | Schutz, B.F., “From Classical Theory to Quantum Gravity”, Space Sci. Rev., 148, 15–23 (2009). [DOI], [ADS]. | |
401 | Schwarzschild, K., “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(VII), 189–196 (1916). [ADS], [physics/9905030]. | |
402 | Seifert, M.D., “Stability of spherically symmetric solutions in modified theories of gravity”, Phys. Rev. D, 76, 064002 (2007). [DOI], [ADS], [arXiv:gr-qc/0703060]. | |
403 | Sepinsky, J.F., Willems, B., Kalogera, V. and Rasio, F.A., “Interacting Binaries with Eccentric Orbits: Secular Orbital Evolution Due to Conservative Mass Transfer”, Astrophys. J., 667, 1170–1184 (2007). [DOI], [ADS], [arXiv:0706.4312]. | |
404 | Sepinsky, J.F., Willems, B., Kalogera, V. and Rasio, F.A., “Interacting Binaries with Eccentric Orbits. II. Secular Orbital Evolution due to Non-conservative Mass Transfer”, Astrophys. J., 702, 1387–1392 (2009). [DOI], [ADS], [arXiv:0903.0621 [astro-ph.SR]]. | |
405 | Sesana, A., Gair, J.R., Berti, E. and Volonteri, M., “Reconstructing the massive black hole cosmic history through gravitational waves”, Phys. Rev. D, 83, 044036 (2011). [DOI], [ADS], [arXiv:1011.5893 [astro-ph.CO]]. | |
406 | Sesana, A., Volonteri, M. and Haardt, F., “LISA detection of massive black hole binaries: imprint of seed populations and extreme recoils”, Class. Quantum Grav., 26, 094033 (2009). [DOI], [ADS], [arXiv:0810.5554]. | |
407 | Seto, N. and Cooray, A., “LISA measurement of gravitational wave background anisotropy: Hexadecapole moment via a correlation analysis”, Phys. Rev. D, 70, 123005 (2004). [DOI], [ADS], [arXiv:astro-ph/0403259]. | |
408 | Seto, N., Kawamura, S. and Nakamura, T., “Possibility of Direct Measurement of the Acceleration of the Universe Using 0.1 Hz Band Laser Interferometer Gravitational Wave Antenna in Space”, Phys. Rev. Lett., 87, 221103 (2001). [DOI], [ADS], [arXiv:astro-ph/0108011]. | |
409 | Shakura, N.I. and Sunyaev, R.A., “Black Holes in Binary Systems. Observational Appearance”, Astron. Astrophys., 24, 337–355 (1973). [ADS]. | |
410 | Shakura, N.I. and Sunyaev, R.A., “A theory of the instability of disk accretion on to black holes and the variability of binary X-ray sources, galactic nuclei and quasars”, Mon. Not. R. Astron. Soc., 175, 613–632 (1976). [ADS]. | |
411 | Shapiro, S.L., “Numerical Relativity at the Frontier”, Prog. Theor. Phys. Suppl., 163, 100–119 (2006). [DOI], [ADS], [arXiv:gr-qc/0509094]. | |
412 | Shibata, M., Nakao, K. and Nakamura, T., “Scalar-type gravitational wave emission from gravitational collapse in Brans-Dicke theory: Detectability by a laser interferometer”, Phys. Rev. D, 50, 7304–7317 (1994). [DOI], [ADS]. | |
413 | Shiiki, N. and Sawado, N., “Regular and black hole solutions in the Einstein Skyrme theory with negative cosmological constant”, Class. Quantum Grav., 22, 3561–3573 (2005). [DOI], [ADS], [arXiv:gr-qc/0503123]. | |
414 | Sivia, D.S., Data Analysis: A Bayesian Tutorial, (Oxford University Press, Oxford; New York, 2006), 2nd edition. | |
415 | Soffel, M.H., Relativity in Astrometry, Celestial Mechanics and Geodesy, Astronomy and Astrophysics Library, (Springer, Berlin; New York, 1989). [DOI], [ADS]. | |
416 | Sopuerta, C.F. and Yunes, N., “Extreme- and intermediate-mass ratio inspirals in dynamical Chern-Simons modified gravity”, Phys. Rev. D, 80, 064006 (2009). [DOI], [ADS], [arXiv:0904.4501 [gr-qc]]. | |
417 | Sota, Y., Suzuki, S. and Maeda, K.-I., “Chaos in static axisymmetric spacetimes: I. Vacuum case”, Class. Quantum Grav., 13, 1241–1260 (1996). [DOI], [ADS], [arXiv:gr-qc/9505036]. | |
418 | Sotiriou, T.P., “The nearly Newtonian regime in non-linear theories of gravity”, Gen. Relativ. Gravit., 38, 1407–1417 (2006). [DOI], [ADS], [arXiv:gr-qc/0507027]. | |
419 | Sotiriou, T.P. and Faraoni, V., “f(R) theories of gravity”, Rev. Mod. Phys., 82, 451–497 (2010). [DOI], [ADS], [arXiv:0805.1726 [gr-qc]]. | |
420 | Sotiriou, T.P. and Faraoni, V., “Black Holes in Scalar-Tensor Gravity”, Phys. Rev. Lett., 108, 081103 (2012). [DOI], [ADS], [arXiv:1109.6324 [gr-qc]]. | |
421 | Sperhake, U., Berti, E. and Cardoso, V., “Numerical simulations of black-hole binaries and gravitational wave emission”, C. R. Physique, 14, 306–317 (2013). [DOI], [ADS], [arXiv:1107.2819 [gr-qc]]. | |
422 | Stairs, I.H., “Testing General Relativity with Pulsar Timing”, Living Rev. Relativity, 6,
lrr-2003-5 (2003). [DOI], [ADS], [arXiv:astro-ph/0307536]. URL (accessed 26 July 2013): http://www.livingreviews.org/lrr-2003-5. |
|
423 | Starobinsky, A., “A new type of isotropic cosmological models without singularity”, Phys. Lett. B, 91, 99–102 (1980). [DOI], [ADS]. | |
424 | Stavridis, A. and Will, C.M., “Bounding the mass of the graviton with gravitational waves: Effect of spin precessions in massive black hole binaries”, Phys. Rev. D, 80, 044002 (2009). [DOI], [ADS], [arXiv:0906.3602 [gr-qc]]. | |
425 | Stavridis, A. and Will, C.M., “Effect of spin precession on bounding the mass of the graviton using gravitational waves from massive black hole binaries”, J. Phys.: Conf. Ser., 228, 012049 (2010). [DOI], [ADS]. | |
426 | Stein, L.C. and Yunes, N., “Effective gravitational wave stress-energy tensor in alternative theories of gravity”, Phys. Rev. D, 83, 064038 (2011). [DOI], [ADS], [arXiv:1012.3144 [gr-qc]]. | |
427 | Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2003), 2nd edition. [ADS], [Google Books]. | |
428 | Straumann, N. and Zhou, Z.-H., “Instability of a colored black hole solution”, Phys. Lett. B, 243, 33–35 (1990). [DOI], [ADS]. | |
429 | Stroeer, A., Gair, J.R. and Vecchio, A., “Automatic Bayesian inference for LISA data analysis strategies”, in Merkovitz, S.M. and Livas, J.C., eds., Laser Interferometer Space Antenna: 6th International LISA Symposium, 6th International LISA Symposium, Greenbelt, MD, USA, 19 – 23 June 2006, AIP Conference Proceedings, 873, pp. 444–451, (American Institute of Physics, Melville, NY, 2006). [DOI], [ADS], [arXiv:gr-qc/0609010]. | |
430 | Stroeer, A. and Vecchio, A., “The LISA verification binaries”, Class. Quantum Grav., 23, S809–S818 (2006). [DOI], [ADS], [arXiv:astro-ph/0605227]. | |
431 | Stroeer, A. et al., “Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets”, Class. Quantum Grav., 24, 541 (2007). [DOI], [ADS], [arXiv:0704.0048 [gr-qc]]. | |
432 | Suen, W.-M., “Distorted black holes in terms of multipole moments”, Phys. Rev. D, 34, 3633–3637 (1986). [DOI], [ADS]. | |
433 | Svrcek, P. and Witten, E., “Axions in string theory”, J. High Energy Phys., 2006(06), 051 (2006). [DOI], [ADS], [arXiv:hep-th/0605206]. | |
434 | Tabor, M., “The Kolmogorov–Arnold–Moser Theorem”, in Chaos and Integrability in Nonlinear Dynamics: An Introduction, pp. 105–112, (Wiley, New York; Chichester, 1989). | |
435 | Talmadge, C., Berthias, J.-P., Hellings, R.W. and Standish, E.M., “Model-independent constraints on possible modifications of Newtonian gravity”, Phys. Rev. Lett., 61, 1159–1162 (1988). [DOI], [ADS]. | |
436 | Tanaka, T., “Classical Black Hole Evaporation in Randall-Sundrum Infinite Braneworld”, Prog. Theor. Phys. Suppl., 148, 307–316 (2002). [DOI], [ADS], [arXiv:gr-qc/0203082]. | |
437 | Tanaka, T. and Haiman, Z., “The Assembly of Supermassive Black Holes at High Redshifts”, Astrophys. J., 696, 1798–1822 (2009). [DOI], [ADS], [arXiv:0807.4702]. | |
438 | Taracchini, A. et al., “Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms”, Phys. Rev. D, 86, 024011 (2012). [DOI], [ADS], [arXiv:1202.0790 [gr-qc]]. | |
439 | Timpano, S.E., Rubbo, L.J. and Cornish, N.J., “Characterizing the galactic gravitational wave background with LISA”, Phys. Rev. D, 73, 122001 (2006). [DOI], [ADS], [arXiv:gr-qc/0504071]. | |
440 | Tinto, M. and Alves, M.E.S., “LISA sensitivities to gravitational waves from relativistic metric theories of gravity”, Phys. Rev. D, 82, 122003 (2010). [DOI], [ADS], [arXiv:1010.1302 [gr-qc]]. | |
441 | Tremaine, S. et al., “The Slope of the Black Hole Mass versus Velocity Dispersion Correlation”, Astrophys. J., 574, 740–753 (2002). [DOI], [ADS], [arXiv:astro-ph/0203468]. | |
442 | Trias, M. and Sintes, A.M., “LISA observations of supermassive black holes: Parameter estimation using full post-Newtonian inspiral waveforms”, Phys. Rev. D, 77, 024030 (2008). [DOI], [ADS], [arXiv:0707.4434 [gr-qc]]. | |
443 | Turyshev, S.G., “Experimental Tests of General Relativity”, Annu. Rev. Nucl. Part. Sci., 58, 207–248 (2008). [DOI], [ADS], [arXiv:0806.1731 [gr-qc]]. | |
444 | Turyshev, S.G., “Experimental tests of general relativity: recent progress and future directions”, Phys. Usp., 52, 1–27 (2009). [DOI], [ADS], [arXiv:0809.3730 [gr-qc]]. | |
445 | Uzan, J.-P., “Varying Constants, Gravitation and Cosmology”, Living Rev. Relativity, 14,
lrr-2011-2 (2010). [DOI], [ADS], [arXiv:1009.5514 [astro-ph.CO]]. URL (accessed 26 July 2013): http://www.livingreviews.org/lrr-2011-2. |
|
446 | Vainshtein, A.I., “To the problem of nonvanishing gravitation mass”, Phys. Lett. B, 39, 393–394 (1972). [DOI], [ADS]. | |
447 | Vallisneri, M., “Geometric time delay interferometry”, Phys. Rev. D, 72, 042003 (2005). [DOI], [ADS], [arXiv:gr-qc/0504145]. | |
448 | Vallisneri, M., “Synthetic LISA: Simulating time delay interferometry in a model LISA”, Phys. Rev. D, 71, 022001 (2005). [DOI], [ADS], [arXiv:gr-qc/0407102]. | |
449 | Vallisneri, M., “Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects”, Phys. Rev. D, 77, 042001 (2008). [DOI], [ADS], [arXiv:gr-qc/0703086]. | |
450 | Vallisneri, M., “A LISA data-analysis primer”, Class. Quantum Grav., 26, 094024 (2009). [DOI], [ADS], [arXiv:0812.0751 [gr-qc]]. | |
451 | Vallisneri, M., “Testing general relativity with gravitational waves: A reality check”, Phys. Rev. D, 86, 082001 (2012). [DOI], [ADS], [arXiv:1207.4759 [gr-qc]]. | |
452 | Vallisneri, M., Crowder, J. and Tinto, M., “Sensitivity and parameter-estimation precision for alternate LISA configurat ions”, Class. Quantum Grav., 25, 065005 (2008). [DOI], [ADS], [arXiv:0710.4369]. | |
453 | Vallisneri, M. and Yunes, N., “Stealth bias in gravitational-wave parameter estimation”, Phys. Rev. D, 87, 102002 (2013). [DOI], [ADS], [arXiv:1301.2627 [gr-qc]]. | |
454 | van Dam, H. and Veltman, M., “Massive and mass-less Yang-Mills and gravitational fields”, Nucl. Phys. B, 22, 397–411 (1970). [DOI], [ADS]. | |
455 | Vecchio, A., “LISA observations of rapidly spinning massive black hole binary systems”, Phys. Rev. D, 70, 042001 (2004). [DOI], [ADS], [arXiv:astro-ph/0304051]. | |
456 | Veitch, J. and Vecchio, A., “Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection”, Class. Quantum Grav., 25, 184010 (2008). [DOI], [ADS], [arXiv:0807.4483 [gr-qc]]. | |
457 | Veitch, J. and Vecchio, A., “Bayesian approach to the follow-up of candidate gravitational wave signals”, Phys. Rev. D, 78, 022001 (2008). [DOI], [ADS], [arXiv:0801.4313 [gr-qc]]. | |
458 | Vigeland, S., Yunes, N. and Stein, L.C., “Bumpy black holes in alternative theories of gravity”, Phys. Rev. D, 83, 104027 (2011). [DOI], [ADS], [arXiv:1102.3706 [gr-qc]]. | |
459 | Vilenkin, A., “Classical and quantum cosmology of the Starobinsky inflationary model”, Phys. Rev. D, 32, 2511–2521 (1985). [DOI]. | |
460 | Volonteri, M., Madau, P. and Haardt, F., “The Formation of Galaxy Stellar Cores by the Hierarchical Merging of Supermassive Black Holes”, Astrophys. J., 593, 661–666 (2003). [DOI], [ADS], [arXiv:astro-ph/0304389]. | |
461 | Wagoner, R.V., “Resonant-Mass Detection of Tensor and Scalar Waves”, in Marck, J.-A. and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, pp. 419–432, (Cambridge University Press, Cambridge, U.K., 1997). [ADS]. | |
462 | Wahlquist, H., “The Doppler response to gravitational waves from a binary star source”, Gen. Relativ. Gravit., 19, 1101–1113 (1987). [DOI], [ADS]. | |
463 | Walker, M. and Penrose, R., “On quadratic first integrals of the geodesic equations for type {22} spacetimes”, Commun. Math. Phys., 18, 265–274 (1970). [DOI], [ADS]. | |
464 | Wang, Y., Shang, Y. and Babak, S., “Extreme mass ratio inspiral data analysis with a phenomenological waveform”, Phys. Rev. D, 86, 104050 (2012). [DOI], [ADS], [arXiv:1207.4956 [gr-qc]]. | |
465 | Warburton, N., Akcay, S., Barack, L., Gair, J.R. and Sago, N., “Evolution of inspiral orbits around a Schwarzschild black hole”, Phys. Rev. D, 85, 061501 (2012). [DOI], [ADS], [arXiv:1111.6908 [gr-qc]]. | |
466 | Warburton, N. and Barack, L., “Self-force on a scalar charge in Kerr spacetime: Eccentric equatorial orbits”, Phys. Rev. D, 83, 124038 (2011). [DOI], [ADS], [arXiv:1103.0287 [gr-qc]]. | |
467 | Wen, L. and Gair, J.R., “Detecting extreme mass ratio inspirals with LISA using time–frequency methods”, Class. Quantum Grav., 22, S445–S452 (2005). [DOI], [ADS], [arXiv:gr-qc/0502100]. | |
468 | Wesley, D.H., Steinhardt, P.J. and Turok, N., “Controlling chaos through compactification in cosmological models with a collapsing phase”, Phys. Rev. D, 72, 063513 (2005). [DOI], [ADS], [arXiv:hep-th/0502108]. | |
469 | Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1993), 2nd edition. [Google Books]. | |
470 | Will, C.M., “Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries”, Phys. Rev. D, 57, 2061–2068 (1998). [DOI], [ADS], [arXiv:gr-qc/9709011]. | |
471 | Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev.
Relativity, 9, lrr-2006-3 (2006). [DOI], [ADS], [arXiv:gr-qc/0510072]. URL (accessed 26 July
2013): http://www.livingreviews.org/lrr-2006-3. |
|
472 | Will, C.M., “Carter-like Constants of the Motion in Newtonian Gravity and Electrodynamics”, Phys. Rev. Lett., 102, 061101 (2009). [DOI], [ADS], [arXiv:0812.0110 [gr-qc]]. | |
473 | Will, C.M. and Yunes, N., “Testing alternative theories of gravity using LISA”, Class. Quantum Grav., 21, 4367–4381 (2004). [DOI], [ADS], [arXiv:gr-qc/0403100]. | |
474 | Willems, B., Deloye, C.J. and Kalogera, V., “Energy Dissipation Through Quasi-static Tides in White Dwarf Binaries”, Astrophys. J., 713, 239–256 (2010). [DOI], [ADS], [arXiv:0904.1953 [astro-ph.SR]]. | |
475 | Willems, B., Vecchio, A. and Kalogera, V., “Probing White Dwarf Interiors with LISA: Periastron Precession in Eccentric Double White Dwarfs”, Phys. Rev. Lett., 100, 041102 (2008). [DOI], [ADS], [arXiv:0706.3700]. | |
476 | Williams, J.G., Turyshev, S.G. and Boggs, D.H., “Progress in Lunar Laser Ranging Tests of Relativistic Gravity”, Phys. Rev. Lett., 93, 261101 (2004). [DOI], [ADS], [arXiv:gr-qc/0411113]. | |
477 | Wiseman, A.G., “Coalescing binary systems of compact objects to (post)5∕2-Newtonian order. II. Higher-order wave forms and radiation recoil”, Phys. Rev. D, 46, 1517–1539 (1992). [DOI], [ADS]. | |
478 | Wiseman, A.G., “Coalescing binary systems of compact objects to (post)5∕2-Newtonian order. IV. The gravitational wave tail”, Phys. Rev. D, 48, 4757–4770 (1993). [DOI], [ADS]. | |
479 | Witek, H., Cardoso, V., Ishibashi, A. and Sperhake, U., “Superradiant instabilities in astrophysical systems”, Phys. Rev. D, 87, 043513 (2013). [DOI], [ADS], [arXiv:1212.0551 [gr-qc]]. | |
480 | Yagi, K., “Gravitational wave observations of galactic intermediate-mass black hole binaries with DECIGO path finder”, Class. Quantum Grav., 29, 075005 (2012). [DOI], [ADS], [arXiv:1202.3512 [astro-ph.CO]]. | |
481 | Yagi, K., “New constraint on scalar Gauss-Bonnet gravity and a possible explanation for the excess of the orbital decay rate in a low-mass x-ray binary”, Phys. Rev. D, 86, 081504 (2012). [DOI], [ADS], [arXiv:1204.4524 [gr-qc]]. | |
482 | Yagi, K., “Scientific Potential of DECIGO Pathfinder and Testing GR with Space-Borne Gravitational Wave Interferometers”, Int. J. Mod. Phys. D, 22, 1341013 (2013). [DOI], [ADS], [arXiv:1302.2388 [gr-qc]]. | |
483 | Yagi, K., Stein, L.C., Yunes, N. and Tanaka, T., “Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity”, Phys. Rev. D, 85, 064022 (2012). [DOI], [ADS], [arXiv:1110.5950 [gr-qc]]. | |
484 | Yagi, K., Tanahashi, N. and Tanaka, T., “Probing the size of extra dimensions with gravitational wave astronomy”, Phys. Rev. D, 83, 084036 (2011). [DOI], [ADS], [arXiv:1101.4997 [gr-qc]]. | |
485 | Yagi, K. and Tanaka, T., “Constraining alternative theories of gravity by gravitational waves from precessing eccentric compact binaries with LISA”, Phys. Rev. D, 81, 064008 (2010). [DOI], [ADS], [arXiv:0906.4269 [gr-qc]]. | |
486 | Yagi, K. and Tanaka, T., “DECIGO/BBO as a Probe to Constrain Alternative Theories of Gravity”, Prog. Theor. Phys., 123, 1069–1078 (2010). [DOI], [ADS], [arXiv:0908.3283 [gr-qc]]. | |
487 | Yagi, K., Yunes, N. and Tanaka, T., “Gravitational Waves from Quasicircular Black-Hole Binaries in Dynamical Chern-Simons Gravity”, Phys. Rev. Lett., 109, 251105 (2012). [DOI], [ADS], [arXiv:1208.5102 [gr-qc]]. | |
488 | Yagi, K., Yunes, N. and Tanaka, T., “Slowly rotating black holes in dynamical Chern-Simons gravity: Deformation quadratic in the spin”, Phys. Rev. D, 86, 044037 (2012). [DOI], [ADS], [arXiv:1206.6130 [gr-qc]]. | |
489 | Yoshino, H. and Kodama, H., “Bosenova Collapse of Axion Cloud around a Rotating Black Hole”, Prog. Theor. Phys., 128, 153–190 (2012). [DOI], [ADS], [arXiv:1203.5070 [gr-qc]]. | |
490 | Yu, Q. and Tremaine, S., “Observational constraints on growth of massive black holes”, Mon. Not. R. Astron. Soc., 335, 965–976 (2002). [DOI], [ADS], [arXiv:astro-ph/0203082]. | |
491 | Yunes, N. and Finn, L.S., “Constraining effective quantum gravity with LISA”, J. Phys.: Conf. Ser., 154, 012041 (2009). [DOI], [ADS], [arXiv:0811.0181 [gr-qc]]. | |
492 | Yunes, N. and Hughes, S.A., “Binary pulsar constraints on the parametrized post-Einsteinian framework”, Phys. Rev. D, 82, 082002 (2010). [DOI], [ADS], [arXiv:1007.1995 [gr-qc]]. | |
493 | Yunes, N., Kocsis, B., Loeb, A. and Haiman, Z., “Imprint of Accretion Disk-Induced Migration on Gravitational Waves from Extreme Mass Ratio Inspirals”, Phys. Rev. Lett., 107, 171103 (2011). [DOI], [ADS], [arXiv:1103.4609 [astro-ph.CO]]. | |
494 | Yunes, N., Miller, M.C. and Thornburg, J., “Effect of massive perturbers on extreme mass-ratio inspiral waveforms”, Phys. Rev. D, 83, 044030 (2011). [DOI], [ADS], [arXiv:1010.1721 [astro-ph.GA]]. | |
495 | Yunes, N., Pani, P. and Cardoso, V., “Gravitational waves from quasicircular extreme mass-ratio inspirals as probes of scalar-tensor theories”, Phys. Rev. D, 85, 102003 (2012). [DOI], [ADS], [arXiv:1112.3351 [gr-qc]]. | |
496 | Yunes, N. and Pretorius, F., “Dynamical Chern-Simons modified gravity: Spinning black holes in the slow-rotation approximation”, Phys. Rev. D, 79, 084043 (2009). [DOI], [ADS], [arXiv:0902.4669 [gr-qc]]. | |
497 | Yunes, N. and Pretorius, F., “Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework”, Phys. Rev. D, 80, 122003 (2009). [DOI], [ADS], [arXiv:0909.3328 [gr-qc]]. | |
498 | Yunes, N., Pretorius, F. and Spergel, D., “Constraining the evolutionary history of Newton’s constant with gravitational wave observations”, Phys. Rev. D, 81, 064018 (2010). [DOI], [ADS], [arXiv:0912.2724 [gr-qc]]. | |
499 | Yunes, N., Psaltis, D., Özel, F. and Loeb, A., “Constraining parity violation in gravity with measurements of neutron-star moments of inertia”, Phys. Rev. D, 81, 064020 (2010). [DOI], [ADS], [arXiv:0912.2736 [gr-qc]]. | |
500 | Yunes, N. and Siemens, X., “Gravitational Wave Tests of General Relativity with Ground-Based Detectors and Pulsar Timing Arrays”, Living Rev. Relativity, submitted, (2013). [ADS], [arXiv:1304.3473 [gr-qc]]. | |
501 | Yunes, N. and Sopuerta, C.F., “Perturbations of Schwarzschild black holes in Chern-Simons modified gravity”, Phys. Rev. D, 77, 064007 (2008). [DOI], [ADS], [arXiv:0712.1028 [gr-qc]]. | |
502 | Yunes, N., Sopuerta, C.F., Rubbo, L.J. and Holley-Bockelmann, K., “Relativistic Effects in Extreme Mass Ratio Gravitational Wave Bursts”, Astrophys. J., 675, 604–613 (2008). [DOI], [ADS], [arXiv:0704.2612]. | |
503 | Yunes, N. and Spergel, D.N., “Double-binary-pulsar test of Chern-Simons modified gravity”, Phys. Rev. D, 80, 042004 (2009). [DOI], [ADS], [arXiv:0810.5541 [gr-qc]]. | |
504 | Yunes, N. and Stein, L.C., “Nonspinning black holes in alternative theories of gravity”, Phys. Rev. D, 83, 104002 (2011). [DOI], [ADS], [arXiv:1101.2921 [gr-qc]]. | |
505 | Zakharov, V.I., “Linearized Gravitation Theory and the Graviton Mass”, JETP Lett., 12, 312 (1970). [ADS]. |