References
![]() |
1 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Predictions for the
rates of compact binary coalescences observable by ground-based gravitational-wave detectors”,
Class. Quantum Grav., 27, 173001 (2010). [![]() ![]() ![]() |
![]() |
2 | Acernese, F. et al. (Virgo Collaboration), Advanced Virgo Baseline Design, VIR-027A-09,
(Virgo, Cascina, 2009). Online version (accessed 26 July 2013): ![]() |
![]() |
3 | Adelberger, E.G., Heckel, B.R. and Nelson, A.E., “Tests of the Gravitational Inverse-Square
Law”, Annu. Rev. Nucl. Part. Sci., 53, 77–121 (2003). [![]() ![]() ![]() |
![]() |
4 | Ajith, P. et al., “Template bank for gravitational waveforms from coalescing binary black holes:
Nonspinning binaries”, Phys. Rev. D, 77, 104017 (2008). [![]() ![]() ![]() |
![]() |
5 | Ajith, P. et al., “Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with
Nonprecessing Spins”, Phys. Rev. Lett., 106, 241101 (2011). [![]() ![]() ![]() |
![]() |
6 | Alexander, S., Finn, L.S. and Yunes, N., “Gravitational-wave probe of effective quantum
gravity”, Phys. Rev. D, 78, 066005 (2008). [![]() ![]() ![]() |
![]() |
7 | Alexander, S.H.S. and Gates Jr, S.J., “Can the string scale be related to the cosmic
baryon asymmetry?”, J. Cosmol. Astropart. Phys., 2006(06), 018 (2006). [![]() ![]() ![]() |
![]() |
8 | Alexander, S. and Yunes, N., “New Post-Newtonian Parameter to Test Chern-Simons Gravity”,
Phys. Rev. Lett., 99, 241101 (2007). [![]() ![]() ![]() |
![]() |
9 | Alexander, S. and Yunes, N., “Parametrized post-Newtonian expansion of Chern-Simons
gravity”, Phys. Rev. D, 75, 124022 (2007). [![]() ![]() ![]() |
![]() |
10 | Alexander, S. and Yunes, N., “Chern-Simons modified gravity as a torsion theory and its
interaction with fermions”, Phys. Rev. D, 77, 124040 (2008). [![]() ![]() ![]() |
![]() |
11 | Alexander, S. and Yunes, N., “Chern-Simons modified general relativity”, Phys. Rep., 480,
1–55 (2009). [![]() ![]() ![]() |
![]() |
12 | Ali-Haïmoud, Y., “Revisiting the double-binary-pulsar probe of nondynamical Chern-Simons
gravity”, Phys. Rev. D, 83, 124050 (2011). [![]() ![]() ![]() |
![]() |
13 | Ali-Haïmoud, Y. and Chen, Y., “Slowly rotating stars and black holes in dynamical
Chern-Simons gravity”, Phys. Rev. D, 84, 124033 (2011). [![]() ![]() ![]() |
![]() |
14 | Alvarez-Gaumé, L. and Witten, E., “Gravitational anomalies”, Nucl. Phys. B, 234, 269–330
(1984). [![]() ![]() |
![]() |
15 | Alves, M.E.S. and Tinto, M., “Pulsar timing sensitivities to gravitational waves from relativistic
metric theories of gravity”, Phys. Rev. D, 83, 123529 (2011). [![]() ![]() ![]() |
![]() |
16 | Amaro-Seoane, P., “Stellar dynamics and extreme-mass ratio inspirals”, arXiv, e-print, (2012).
[![]() ![]() |
![]() |
17 | Amaro-Seoane, P., Brem, P., Cuadra, J. and Armitage, P.J., “The Butterfly Effect in the
Extreme-mass Ratio Inspiral Problem”, Astrophys. J. Lett., 744, L20 (2012). [![]() ![]() ![]() |
![]() |
18 | Amaro-Seoane, P., Gair, J.R., Freitag, M., Miller, M.C., Mandel, I., Cutler, C. and Babak,
S., “Intermediate and extreme mass-ratio inspirals – astrophysics, science applications
and detection using LISA”, Class. Quantum Grav., 24, R113–R169 (2007). [![]() ![]() ![]() |
![]() |
19 | Amaro-Seoane, P. and Preto, M., “The impact of realistic models of mass segregation on the
event rate of extreme-mass ratio inspirals and cusp re-growth”, Class. Quantum Grav., 28,
094017 (2011). [![]() ![]() ![]() |
![]() |
20 | Amaro-Seoane, P. et al., “Low-frequency gravitational-wave science with eLISA/NGO”, Class.
Quantum Grav., 29, 124016 (2012). [![]() ![]() ![]() |
![]() |
21 | Amaro-Seoane, P. et al., “eLISA: Astrophysics and cosmology in the millihertz regime”, GW
Notes, 6, 4–110 (2013). [![]() ![]() |
![]() |
22 | Amelino-Camelia, G., “The three perspectives on the quantum-gravity problem and
their implications for the fate of Lorentz symmetry”, arXiv, e-print, (2003). [![]() ![]() |
![]() |
23 | Ando, M. et al. (DECIGO Collaboration), “DECIGO pathfinder”, Class. Quantum Grav., 26,
094019 (2009). [![]() ![]() |
![]() |
24 | Apostolatos, T.A., Lukes-Gerakopoulos, G. and Contopoulos, G., “How to Observe a Non-Kerr
Spacetime Using Gravitational Waves”, Phys. Rev. Lett., 103, 111101 (2009). [![]() ![]() ![]() |
![]() |
25 | Armano, M. et al., “LISA Pathfinder: the experiment and the route to LISA”, Class. Quantum
Grav., 26, 094001 (2009). [![]() ![]() |
![]() |
26 | Arun, K.G., “Generic bounds on dipolar gravitational radiation from inspiralling compact
binaries”, Class. Quantum Grav., 29, 075011 (2012). [![]() ![]() ![]() |
![]() |
27 | Arun, K.G., Iyer, B.R., Qusailah, M.S.S. and Sathyaprakash, B.S., “Probing the nonlinear
structure of general relativity with black hole binaries”, Phys. Rev. D, 74, 024006 (2006). [![]() ![]() ![]() |
![]() |
28 | Arun, K.G., Iyer, B.R., Qusailah, M.S.S. and Sathyaprakash, B.S., “Testing post-Newtonian
theory with gravitational wave observations”, Class. Quantum Grav., 23, L37–L43 (2006).
[![]() ![]() ![]() |
![]() |
29 | Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., Sinha, S. and Van Den Broeck, C., “Higher signal
harmonics, LISA’s angular resolution, and dark energy”, Phys. Rev. D, 76, 104016 (2007).
[![]() ![]() ![]() |
![]() |
30 | Arun, K.G., Iyer, B.R, Sathyaprakash, B.S. and Sundararajan, P.A., “Parameter estimation
of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The
nonspinning case”, Phys. Rev. D, 71, 084008 (2005). [![]() |
![]() |
31 | Arun, K.G. and Pai, A., “Tests of General Relativity and Alternative Theories of Gravity Using
Gravitational Wave Observations”, Int. J. Mod. Phys. D, 22, 1341012 (2013). [![]() ![]() ![]() |
![]() |
32 | Arun, K.G. and Will, C.M., “Bounding the mass of the graviton with gravitational waves:
effect of higher harmonics in gravitational waveform templates”, Class. Quantum Grav., 26,
155002 (2009). [![]() ![]() ![]() |
![]() |
33 | Arun, K.G. et al., “Massive black-hole binary inspirals: results from the LISA parameter
estimation taskforce”, Class. Quantum Grav., 26, 094027 (2009). [![]() ![]() ![]() |
![]() |
34 | Arvanitaki, A. and Dubovsky, S., “Exploring the string axiverse with precision black hole
physics”, Phys. Rev. D, 83, 044026 (2011). [![]() ![]() ![]() |
![]() |
35 | Babak, S., Gair, J.R. and Porter, E.K., “An algorithm for the detection of extreme mass
ratio inspirals in LISA data”, Class. Quantum Grav., 26, 135004 (2009). [![]() ![]() ![]() |
![]() |
36 | Babak, S. and Grishchuk, L.P., “Finite-Range Gravity and its Role in Gravitational Waves,
Black Holes and Cosmology”, Int. J. Mod. Phys. D, 12, 1905–1959 (2003). [![]() ![]() ![]() |
![]() |
37 | Babak, S. et al. (Challenge-1B participants), “The Mock LISA Data Challenges: from
Challenge 1B to Challenge 3”, Class. Quantum Grav., 25, 184026 (2008). [![]() ![]() ![]() |
![]() |
38 | Babak, S. et al., LISA Data Analysis Status, LISA-MSO-TN-1001-2-1, (LISA Mission Science
Office, Greenbelt, MD, 2009). Online version (accessed 26 July 2013): ![]() |
![]() |
39 | Babak, S. et al. (Challenge 3 participants), “The Mock LISA Data Challenges: from challenge
3 to challenge 4”, Class. Quantum Grav., 27, 084009 (2010). [![]() ![]() ![]() |
![]() |
40 | Babichev, E. and Deffayet, C., “An introduction to the Vainshtein mechanism”, arXiv, e-print,
(2013). [![]() ![]() |
![]() |
41 | Babichev, E., Deffayet, C. and Ziour, R., “Recovery of general relativity in massive gravity via
the Vainshtein mechanism”, Phys. Rev. D, 82, 104008 (2010). [![]() ![]() ![]() |
![]() |
42 | Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J.R., “Gravitational-Wave
Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96,
111102 (2006). [![]() ![]() ![]() |
![]() |
43 | Baker, J.G. and Thorpe, J.I., “Comparison of Atom Interferometers and Light Interferometers
as Space-Based Gravitational Wave Detectors”, Phys. Rev. Lett., 108, 211101 (2012). [![]() ![]() ![]() |
![]() |
44 | Balmelli, S. and Jetzer, P., “Effective-one-body Hamiltonian with next-to-leading order
spin-spin coupling for two nonprecessing black holes with aligned spins”, Phys. Rev. D, 87,
124036 (2013). [![]() ![]() ![]() |
![]() |
45 | Barack, L., “Gravitational self-force in extreme mass-ratio inspirals”, Class. Quantum Grav.,
26, 213001 (2009). [![]() ![]() ![]() |
![]() |
46 | Barack, L. and Cutler, C., “LISA capture sources: Approximate waveforms, signal-to-noise
ratios, and parameter estimation accuracy”, Phys. Rev. D, 69, 082005 (2004). [![]() ![]() ![]() |
![]() |
47 | Barack, L. and Cutler, C., “Using LISA extreme-mass-ratio inspiral sources to test off-Kerr
deviations in the geometry of massive black holes”, Phys. Rev. D, 75, 042003 (2007). [![]() ![]() ![]() |
![]() |
48 | Barack, L. and Sago, N., “Gravitational self-force on a particle in circular orbit around a
Schwarzschild black hole”, Phys. Rev. D, 75, 064021 (2007). [![]() ![]() ![]() |
![]() |
49 | Barack, L. and Sago, N., “Gravitational self-force on a particle in eccentric orbit around a
Schwarzschild black hole”, Phys. Rev. D, 81, 084021 (2010). [![]() ![]() ![]() |
![]() |
50 | Barausse, E., “Relativistic dynamical friction in a collisional fluid”, Mon. Not. R. Astron. Soc.,
382, 826–834 (2007). [![]() ![]() ![]() |
![]() |
51 | Barausse, E. and Buonanno, A., “Extending the effective-one-body Hamiltonian of black-hole
binaries to include next-to-next-to-leading spin-orbit couplings”, Phys. Rev. D, 84, 104027
(2011). [![]() ![]() ![]() |
![]() |
52 | Barausse, E. and Rezzolla, L., “Influence of the hydrodynamic drag from an accretion torus on
extreme mass-ratio inspirals”, Phys. Rev. D, 77, 104027 (2008). [![]() ![]() ![]() |
![]() |
53 | Barausse, E., Rezzolla, L., Petroff, D. and Ansorg, M., “Gravitational waves from extreme mass
ratio inspirals in nonpure Kerr spacetimes”, Phys. Rev. D, 75, 064026 (2007). [![]() ![]() ![]() |
![]() |
54 | Barausse, E. and Sotiriou, T.P., “Perturbed Kerr Black Holes Can Probe Deviations from
General Relativity”, Phys. Rev. Lett., 101, 099001 (2008). [![]() ![]() ![]() |
![]() |
55 | Barausse, E., Sotiriou, T.P. and Miller, J.C., “Curvature singularities, tidal forces and the
viability of Palatini f(R) gravity”, Class. Quantum Grav., 25, 105008 (2008). [![]() ![]() ![]() |
![]() |
56 | Barausse, E., Sotiriou, T.P. and Miller, J.C., “A no-go theorem for polytropic spheres in Palatini
f(R) gravity”, Class. Quantum Grav., 25, 062001 (2008). [![]() ![]() ![]() |
![]() |
57 | Barbero G, J.F. and Villaseñor, E.J., “Lorentz violations and Euclidean signature metrics”,
Phys. Rev. D, 68, 087501 (2003). [![]() ![]() ![]() |
![]() |
58 | Bauch, A. and Weyers, S., “New experimental limit on the validity of local position invariance”,
Phys. Rev. D, 65, 081101(R) (2002). [![]() ![]() |
![]() |
59 | Bebronne, M.V., Theoretical and Phenomenological Aspects of Theories with Massive
Gravitons, Ph.D. thesis, (Université Libre de Bruxelles, Brussels, Belgium, 2009). [![]() ![]() |
![]() |
60 | Begelman, M.C., Volonteri, M. and Rees, M.J., “Formation of supermassive black holes by
direct collapse in pre-galactic haloes”, Mon. Not. R. Astron. Soc., 370, 289–298 (2006). [![]() ![]() ![]() |
![]() |
61 | Bekenstein, J.D., “Relativistic gravitation theory for the modified Newtonian dynamics
paradigm”, Phys. Rev. D, 70, 083509 (2004). [![]() ![]() ![]() |
![]() |
62 | Belinfante, F.J. and Swihart, J.C., “Phenomenological linear theory of gravitation: Part I.
Classical mechanics”, Ann. Phys. (N.Y.), 1, 168–195 (1957). [![]() ![]() |
![]() |
63 | Bender, P.L. and Hils, D., “Confusion noise level due to galactic and extragalactic binaries”,
Class. Quantum Grav., 14, 1439–1444 (1997). [![]() ![]() |
![]() |
64 | Bender, P.L. et al. (LISA Study Team), LISA. Laser Interferometer Space Antenna for
the detection and observation of gravitational waves. An international project in the field
of Fundamental Physics in Space. Pre-Phase A report, MPQ-233, (Max-Planck-Institut für
Quantenoptik, Garching, 1998). Online version (accessed 26 July 2013): ![]() |
![]() |
65 | Benenti, S. and Francaviglia, M., “Remarks on certain separability structures and their
applications to general relativity”, Gen. Relativ. Gravit., 10, 79–92 (1979). [![]() ![]() |
![]() |
66 | Berry, C.P.L. and Gair, J.R., “Linearized f(R) gravity: Gravitational radiation and Solar
System tests”, Phys. Rev. D, 83, 104022 (2011). [![]() ![]() ![]() |
![]() |
67 | Berry, C.P.L. and Gair, J.R., “Extreme-mass-ratio-bursts from extragalactic sources”, Mon.
Not. R. Astron. Soc., 433, 3572–3583 (2013). [![]() ![]() ![]() |
![]() |
68 | Berry, C.P.L. and Gair, J.R., “Observing the Galaxy’s massive black hole with gravitational
wave bursts”, Mon. Not. R. Astron. Soc., 429, 589–612 (2013). [![]() ![]() ![]() |
![]() |
69 | Berti, E., “Astrophysical Black Holes as Natural Laboratories for Fundamental Physics and
Strong-Field Gravity”, Braz. J. Phys. (2013). [![]() ![]() ![]() |
![]() |
70 | Berti, E., Buonanno, A. and Will, C.M., “Estimating spinning binary parameters and testing
alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025 (2005). [![]() ![]() ![]() |
![]() |
71 | Berti, E., Buonanno, A. and Will, C.M., “Testing general relativity and probing the merger
history of massive black holes with LISA”, Class. Quantum Grav., 22, S943–S954 (2005). [![]() ![]() ![]() |
![]() |
72 | Berti, E., Cardoso, J., Cardoso, V. and Cavaglià, M., “Matched filtering and parameter
estimation of ringdown waveforms”, Phys. Rev. D, 76, 104044 (2007). [![]() ![]() ![]() |
![]() |
73 | Berti, E. and Cardoso, V., “Supermassive Black Holes or Boson Stars? Hair Counting with
Gravitational Wave Detectors”, Int. J. Mod. Phys. D, 15, 2209–2216 (2006). [![]() ![]() ![]() |
![]() |
74 | Berti, E., Cardoso, V., Gonzalez, J.A., Sperhake, U., Hannam, M., Husa, S. and Brügmann,
B., “Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis”,
Phys. Rev. D, 76, 064034 (2007). [![]() ![]() ![]() |
![]() |
75 | Berti, E., Cardoso, V., Gualtieri, L., Horbatsch, M. and Sperhake, U., “Numerical simulations
of single and binary black holes in scalar-tensor theories: Circumventing the no-hair theorem”,
Phys. Rev. D, 87, 124020 (2013). [![]() ![]() ![]() |
![]() |
76 | Berti, E., Cardoso, V. and Starinets, A.O., “Quasinormal modes of black holes and black
branes”, Class. Quantum Grav., 26, 163001 (2009). [![]() ![]() ![]() |
![]() |
77 | Berti, E., Cardoso, V. and Will, C.M., “Gravitational-wave spectroscopy of massive black
holes with the space interferometer LISA”, Phys. Rev. D, 73, 064030 (2006). [![]() ![]() ![]() |
![]() |
78 | Berti, E., Gair, J.R. and Sesana, A., “Graviton mass bounds from space-based
gravitational-wave observations of massive black hole populations”, Phys. Rev. D, 84, 101501
(2011). [![]() ![]() ![]() |
![]() |
79 | Berti, E., Gualtieri, L., Horbatsch, M. and Alsing, J., “Light scalar field constraints from
gravitational-wave observations of compact binaries”, Phys. Rev. D, 85, 122005 (2012). [![]() ![]() ![]() |
![]() |
80 | Berti, E. and Volonteri, M., “Cosmological Black Hole Spin Evolution by Mergers and
Accretion”, Astrophys. J., 684, 822–828 (2008). [![]() ![]() ![]() |
![]() |
81 | Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the
Cassini spacecraft”, Nature, 425, 374–376 (2003). [![]() ![]() |
![]() |
82 | Binétruy, P., Bohé, A., Caprini, C. and Dufaux, J.-F., “Cosmological backgrounds of
gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources”, J.
Cosmol. Astropart. Phys., 2012(06), 027 (2012). [![]() ![]() ![]() |
![]() |
83 | Bisnovatyi-Kogan, G.S. and Blinnikov, S.I., “Disk accretion onto a black hole at subcritical
luminosity”, Astron. Astrophys., 59, 111–125 (1977). [![]() |
![]() |
84 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 9, lrr-2006-4 (2006). [![]() ![]() http://www.livingreviews.org/lrr-2006-4. |
![]() |
85 | Blanchet, L., Damour, T., Esposito-Farèse, G. and Iyer, B.R., “Gravitational Radiation from
Inspiralling Compact Binaries Completed at the Third Post-Newtonian Order”, Phys. Rev.
Lett., 93, 091101 (2004). [![]() |
![]() |
86 | Blanchet, L., Damour, T., Iyer, B.R., Will, C.M. and Wiseman, A.G., “Gravitational-Radiation
Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74,
3515–3518 (1995). [![]() |
![]() |
87 | Blanchet, L., Faye, G., Iyer, B.R. and Joguet, B., “Gravitational-wave inspiral of compact
binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501(R) (2002). [![]() |
![]() |
88 | Blanchet, L. and Sathyaprakash, B.S., “Detecting a Tail Effect in Gravitational-Wave
Experiments”, Phys. Rev. Lett., 74, 1067–1070 (1995). [![]() ![]() |
![]() |
89 | Błaut, A., “Angular and frequency response of the gravitational wave interferometers in the
metric theories of gravity”, Phys. Rev. D, 85, 043005 (2012). [![]() ![]() |
![]() |
90 | Błaut, A., Babak, S. and Królak, A., “Mock LISA data challenge for the Galactic white dwarf
binaries”, Phys. Rev. D, 81, 063008 (2010). [![]() ![]() ![]() |
![]() |
91 | Bondi, H., “On spherically symmetrical accretion”, Mon. Not. R. Astron. Soc., 112, 195–204
(1952). [![]() |
![]() |
92 | Bondi, H. and Hoyle, F., “On the mechanism of accretion by stars”, Mon. Not. R. Astron.
Soc., 104, 273–282 (1944). [![]() |
![]() |
93 | Brink, J., “Spacetime encodings. I. A spacetime reconstruction problem”, Phys. Rev. D, 78,
102001 (2008). [![]() ![]() ![]() |
![]() |
94 | Brink, J., “Spacetime encodings. II. Pictures of integrability”, Phys. Rev. D, 78, 102002 (2008).
[![]() ![]() ![]() |
![]() |
95 | Brown, D.A., Brink, J., Fang, H., Gair, J.R., Li, C., Lovelace, G., Mandel, I. and Thorne,
K.S., “Prospects for Detection of Gravitational Waves from Intermediate-Mass-Ratio Inspirals”,
Phys. Rev. Lett., 99, 201102 (2007). [![]() ![]() ![]() |
![]() |
96 | Brown, D.A., Crowder, J., Cutler, C., Mandel, I. and Vallisneri, M., “A three-stage search for
supermassive black-hole binaries in LISA data”, Class. Quantum Grav., 24, 595 (2007). [![]() ![]() ![]() |
![]() |
97 | Brownstein, J.R. and Moffat, J.W., “Galaxy Rotation Curves without Nonbaryonic Dark
Matter”, Astrophys. J., 636, 721–741 (2006). [![]() ![]() ![]() |
![]() |
98 | Brownstein, J.R. and Moffat, J.W., “The Bullet Cluster 1E0657-558 evidence shows modified
gravity in the absence of dark matter”, Mon. Not. R. Astron. Soc., 382, 29–47 (2007). [![]() ![]() ![]() |
![]() |
99 | Buonanno, A. and Damour, T., “Effective one-body approach to general relativistic two-body
dynamics”, Phys. Rev. D, 59, 084006 (1999). [![]() ![]() ![]() |
![]() |
100 | Buonanno, A. and Damour, T., “Transition from inspiral to plunge in binary black hole
coalescences”, Phys. Rev. D, 62, 064015 (2000). [![]() ![]() ![]() |
![]() |
101 | Buonanno, A., Pan, Y., Pfeiffer, H.P., Scheel, M.A., Buchman, L.T. and Kidder, L.E.,
“Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence
of nonspinning, equal-mass black holes”, Phys. Rev. D, 79, 124028 (2009). [![]() ![]() ![]() |
![]() |
102 | Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y., “Accurate Evolutions of
Orbiting Black-Hole Binaries without Excision”, Phys. Rev. Lett., 96, 111101 (2006). [![]() ![]() ![]() |
![]() |
103 | Canizares, P., Gair, J.R. and Sopuerta, C.F., “Testing Chern-Simons modified gravity with
gravitational-wave detections of extreme-mass-ratio binaries”, Phys. Rev. D, 86, 044010 (2012).
[![]() ![]() ![]() |
![]() |
104 | Canizares, P., Gair, J.R. and Sopuerta, C.F., “Testing Chern-Simons modified gravity with
observations of extreme-mass-ratio binaries”, J. Phys.: Conf. Ser., 363, 012019 (2012). [![]() ![]() ![]() |
![]() |
105 | Cannella, U., Effective Field Theory Methods in Gravitational Physics and Tests of Gravity,
Ph.D. thesis, (University of Geneva, Geneva, Switzerland, 2011). [![]() ![]() |
![]() |
106 | Cannella, U., Foffa, S., Maggiore, M., Sanctuary, H. and Sturani, R., “Extracting the three- and
four-graviton vertices from binary pulsars and coalescing binaries”, Phys. Rev. D, 80, 124035
(2009). [![]() ![]() ![]() |
![]() |
107 | Capozziello, S., Carloni, S. and Troisi, A., “Quintessence without scalar fields”, in Pandalai,
S.G., ed., Recent Research Developments in Astronomy and Astrophysics, Vol. 1, p. 625,
(Research Signpost, Trivandrum, India, 2003). [![]() ![]() |
![]() |
108 | Capozziello, S. and Francaviglia, M., “Extended theories of gravity and their cosmological and
astrophysical applications”, Gen. Relativ. Gravit., 40, 357–420 (2008). [![]() |
![]() |
109 | Capozziello, S., Stabile, A. and Troisi, A., “a General Solution in the Newtonian Limit of
f(R)-GRAVITY”, Mod. Phys. Lett. A, 24, 659–665 (2009). [![]() ![]() ![]() |
![]() |
110 | Cardoso, V., Chakrabarti, S., Pani, P., Berti, E. and Gualtieri, L., “Floating and Sinking: The
Imprint of Massive Scalars around Rotating Black Holes”, Phys. Rev. Lett., 107, 241101 (2011).
[![]() ![]() ![]() |
![]() |
111 | Cardoso, V. and Gualtieri, L., “Perturbations of Schwarzschild black holes in dynamical
Chern-Simons modified gravity”, Phys. Rev. D, 80, 064008 (2009). [![]() ![]() ![]() |
![]() |
112 | Carroll, S.M., Duvvuri, V., Trodden, M. and Turner, M.S., “Is cosmic speed-up due to new
gravitational physics?”, Phys. Rev. D, 70, 043528 (2004). [![]() ![]() ![]() |
![]() |
113 | Carter, B., “Global Structure of the Kerr Family of Gravitational Fields”, Phys. Rev., 174,
1559–1571 (1968). [![]() ![]() |
![]() |
114 | Carter, B., “Axisymmetric black hole has only two degrees of freedom”, Phys. Rev. Lett., 26,
331–333 (1971). [![]() ![]() |
![]() |
115 | Celotti, A., Miller, J.C. and Sciama, D.W., “Astrophysical evidence for the existence of black
holes”, Class. Quantum Grav., 16, A3–A21 (1999). [![]() ![]() ![]() |
![]() |
116 | Cembranos, J.A.R., “Dark Matter from R2 Gravity”, Phys. Rev. Lett., 102, 141301 (2009).
[![]() ![]() ![]() |
![]() |
117 | Centrella, J., Baker, J.G., Kelly, B.J. and van Meter, J.R., “Black-hole binaries, gravitational
waves, and numerical relativity”, Rev. Mod. Phys., 82, 3069–3119 (2010). [![]() ![]() ![]() |
![]() |
118 | Chamberlin, S.J. and Siemens, X., “Stochastic backgrounds in alternative theories of gravity:
Overlap reduction functions for pulsar timing arrays”, Phys. Rev. D, 85, 082001 (2012). [![]() ![]() ![]() |
![]() |
119 | Chandrasekhar, S., The Mathematical Theory of Black Holes, International Series of Monographs on Physics, 69, (Oxford University Press, Oxford; New York, 1992). |
![]() |
120 | Chatziioannou, K., Yunes, N. and Cornish, N., “Model-independent test of general relativity:
An extended post-Einsteinian framework with complete polarization content”, Phys. Rev. D,
86, 022004 (2012). [![]() ![]() ![]() |
![]() |
121 | Chiba, T., “1∕R gravity and scalar-tensor gravity”, Phys. Lett. B, 575, 1–3 (2003). [![]() ![]() ![]() |
![]() |
122 | Ciufolini, I. and Pavlis, E.C., “A confirmation of the general relativistic prediction of the
Lense-Thirring effect”, Nature, 431, 958–960 (2004). [![]() ![]() |
![]() |
123 | Clowe, D., Bradač, M., Gonzalez, A.H., Markevitch, M., Randall, S.W., Jones, C. and Zaritsky,
D., “A Direct Empirical Proof of the Existence of Dark Matter”, Astrophys. J. Lett., 648,
L109–L113 (2006). [![]() ![]() ![]() |
![]() |
124 | Collins, H., Gravity’s Shadow: The Search for Gravitational Waves, (University of Chicago
Press, Chicago; London, 2004). [![]() |
![]() |
125 | Collins, N.A. and Hughes, S.A., “Towards a formalism for mapping the spacetimes of massive
compact objects: Bumpy black holes and their orbits”, Phys. Rev. D, 69, 124022 (2004). [![]() ![]() ![]() |
![]() |
126 | Comelli, D., “Born-Infeld-type gravity”, Phys. Rev. D, 72, 064018 (2005). [![]() ![]() |
![]() |
127 | Cooray, A., “Gravitational-wave background of neutron star-white dwarf binaries”, Mon. Not.
R. Astron. Soc., 354, 25–30 (2004). [![]() ![]() ![]() |
![]() |
128 | Cooray, A. and Seto, N., “Graviton mass from close white dwarf binaries detectable with LISA”,
Phys. Rev. D, 69, 103502 (2004). [![]() ![]() ![]() |
![]() |
129 | Cooray, A. and Seto, N., “Can the Laser Interferometer Space Antenna Resolve the Distance
to the Large Magellanic Cloud?”, Astrophys. J. Lett., 623, L113–L116 (2005). [![]() ![]() ![]() |
![]() |
130 | Cornish, N.J., “Detection strategies for extreme mass ratio inspirals”, Class. Quantum Grav.,
28, 094016 (2011). [![]() ![]() ![]() |
![]() |
131 | Cornish, N.J. and Larson, S.L., “LISA data analysis: Source identification and subtraction”,
Phys. Rev. D, 67, 103001 (2003). [![]() ![]() ![]() |
![]() |
132 | Cornish, N.J. and Porter, E.K., “The search for massive black hole binaries with LISA”, Class.
Quantum Grav., 24, 5729–5755 (2007). [![]() ![]() ![]() |
![]() |
133 | Cornish, N.J. and Rubbo, L.J., “LISA response function”, Phys. Rev. D, 67, 022001 (2003).
[![]() ![]() |
![]() |
134 | Cornish, N.J., Sampson, L., Yunes, N. and Pretorius, F., “Gravitational wave tests of general
relativity with the parameterized post-Einsteinian framework”, Phys. Rev. D, 84, 062003
(2011). [![]() ![]() ![]() |
![]() |
135 | Crowder, J. and Cornish, N.J., “Beyond LISA: Exploring future gravitational wave missions”,
Phys. Rev. D, 72, 083005 (2005). [![]() ![]() ![]() |
![]() |
136 | Crowder, J. and Cornish, N.J., “Solution to the galactic foreground problem for LISA”, Phys.
Rev. D, 75, 043008 (2007). [![]() ![]() ![]() |
![]() |
137 | Cutler, C., “Angular resolution of the LISA gravitational wave detector”, Phys. Rev. D, 57,
7089–7102 (1998). [![]() ![]() ![]() |
![]() |
138 | Cutler, C. and Harms, J., “Big Bang Observer and the neutron-star-binary subtraction
problem”, Phys. Rev. D, 73, 042001 (2006). [![]() ![]() ![]() |
![]() |
139 | Cutler, C., Hiscock, W.A. and Larson, S.L., “LISA, binary stars, and the mass of the graviton”,
Phys. Rev. D, 67, 024015 (2003). [![]() ![]() ![]() |
![]() |
140 | Cutler, C. and Lindblom, L., “Gravitational helioseismology?”, Phys. Rev. D, 54, 1287–1290
(1996). [![]() ![]() ![]() |
![]() |
141 | Damour, T., “Coalescence of two spinning black holes: An effective one-body approach”, Phys.
Rev. D, 64, 124013 (2001). [![]() ![]() ![]() |
![]() |
142 | Damour, T. and Esposito-Farèse, G., “Nonperturbative strong-field effects in tensor-scalar
theories of gravitation”, Phys. Rev. Lett., 70, 2220–2223 (1993). [![]() ![]() |
![]() |
143 | Damour, T. and Esposito-Farèse, G., “Gravitational-wave versus binary-pulsar tests of
strong-field gravity”, Phys. Rev. D, 58, 042001 (1998). [![]() ![]() ![]() |
![]() |
144 | Damour, T., Nagar, A. and Bernuzzi, S., “Improved effective-one-body description of coalescing
nonspinning black-hole binaries and its numerical-relativity completion”, Phys. Rev. D, 87,
084035 (2013). [![]() ![]() ![]() |
![]() |
145 | Davies, M.B. and King, A., “The Stars of the Galactic Center”, Astrophys. J. Lett., 624,
L25–L27 (2005). [![]() ![]() ![]() |
![]() |
146 | de Felice, A. and Tsujikawa, S., “f(R) Theories”, Living Rev. Relativity, 13, lrr-2010-3 (2010).
[![]() ![]() ![]() http://www.livingreviews.org/lrr-2010-3. |
![]() |
147 | de Freitas Pacheco, J.A., Filloux, C. and Regimbau, T., “Capture rates of compact
objects by supermassive black holes”, Phys. Rev. D, 74, 023001 (2006). [![]() ![]() ![]() |
![]() |
148 | Del Pozzo, W., Veitch, J. and Vecchio, A., “Testing general relativity using Bayesian model
selection: Applications to observations of gravitational waves from compact binary systems”,
Phys. Rev. D, 83, 082002 (2011). [![]() ![]() ![]() |
![]() |
149 | Dhurandhar, S.V. and Tinto, M., “Time-Delay Interferometry”, Living Rev. Relativity, 8,
lrr-2005-4 (2005). [![]() ![]() http://www.livingreviews.org/lrr-2005-4. |
![]() |
150 | Di Stefano, R., Greiner, J., Murray, S. and Garcia, M., “A New Way to Detect Massive
Black Holes in Galaxies: The Stellar Remnants of Tidal Disruption”, Astrophys. J. Lett., 551,
L37–L40 (2001). [![]() ![]() ![]() |
![]() |
151 | Diener, P., Vega, I., Wardell, B. and Detweiler, S., “Self-Consistent Orbital Evolution of a
Particle around a Schwarzschild Black Hole”, Phys. Rev. Lett., 108, 191102 (2012). [![]() ![]() ![]() |
![]() |
152 | Doeleman, S.S. et al., “Jet-Launching Structure Resolved Near the Supermassive Black Hole
in M87”, Science, 338, 355–358 (2012). [![]() ![]() ![]() |
![]() |
153 | Dolgov, A.D. and Kawasaki, M., “Can modified gravity explain accelerated cosmic expansion?”,
Phys. Lett. B, 573, 1–4 (2003). [![]() ![]() ![]() |
![]() |
154 | Drasco, S. and Hughes, S.A., “Gravitational wave snapshots of generic extreme mass ratio
inspirals”, Phys. Rev. D, 73, 024027 (2006). [![]() ![]() ![]() |
![]() |
155 | Dreyer, O., Kelly, B.J., Krishnan, B., Finn, L.S., Garrison, D. and Lopez-Aleman, R.,
“Black-hole spectroscopy: testing general relativity through gravitational-wave observations”,
Class. Quantum Grav., 21, 787–803 (2004). [![]() ![]() ![]() |
![]() |
156 | Droz, S., Heusler, M. and Straumann, N., “New black hole solutions with hair”, Phys. Lett. B,
268, 371–376 (1991). [![]() ![]() |
![]() |
157 | Dubeibe, F.L., Pachón, L.A. and Sanabria-Gómez, J.D., “Chaotic dynamics around
astrophysical objects with nonisotropic stresses”, Phys. Rev. D, 75, 023008 (2007). [![]() ![]() ![]() |
![]() |
158 | Dyda, S., Flanagan, É.É. and Kamionkowski, M., “Vacuum instability in Chern-Simons
gravity”, Phys. Rev. D, 86, 124031 (2012). [![]() ![]() ![]() |
![]() |
159 | Eardley, D.M., Lee, D.L. and Lightman, A.P., “Gravitational-Wave Observations as a Tool for
Testing Relativistic Gravity”, Phys. Rev. D, 8, 3308–3321 (1973). [![]() ![]() |
![]() |
160 | Eardley, D.M., Lee, D.L., Lightman, A.P., Wagoner, R.V. and Will, C.M., “Gravitational-wave
observations as a tool for testing relativistic gravity”, Phys. Rev. Lett., 30, 884–886 (1973).
[![]() ![]() |
![]() |
161 | Edlund, J.A., Tinto, M., Królak, A. and Nelemans, G., “Simulation of the white dwarf white
dwarf galactic background in the LISA data”, Class. Quantum Grav., 22, 913 (2005). [![]() ![]() ![]() |
![]() |
162 | Edlund, J.A., Tinto, M., Królak, A. and Nelemans, G., “White-dwarf white-dwarf
galactic background in the LISA data”, Phys. Rev. D, 71, 122003 (2005). [![]() ![]() ![]() |
![]() |
163 | Eling, C., Jacobson, T. and Mattingly, D., “Einstein-Æther Theory”, in Liu, J.T., Duff, M.J.,
Stelle, K.S. and Woodard, R.P., eds., Deserfest: A Celebration of the Life and Works of
Stanley Deser, University of Michigan, Ann Arbor, USA, 3 – 5 April 2004, pp. 163–179, (World
Scientific, Singapore; River Edge, NJ, 2006). [![]() ![]() ![]() |
![]() |
164 | Emparan, R., Fabbri, A. and Kaloper, N., “Quantum Black Holes as Holograms in AdS
Braneworlds”, J. High Energy Phys., 2002(08), 043 (2002). [![]() ![]() ![]() |
![]() |
165 | Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational Field Problem”, Phys.
Rev., 167, 1175–1177 (1968). [![]() ![]() |
![]() |
166 | Estabrook, F. and Wahlquist, H., “Response of Doppler spacecraft tracking to gravitational
radiation”, Gen. Relativ. Gravit., 6, 439–447 (1975). [![]() ![]() |
![]() |
167 | “European Gravitational Observatory”, project homepage, EGO. URL (accessed 26 July 2013):
![]() |
![]() |
168 | Evans, J.D., Hall, L.M.H. and Caillol, P., “Standard cosmological evolution in a wide range of
f(R) models”, Phys. Rev. D, 77, 083514 (2008). [![]() ![]() ![]() |
![]() |
169 | Everitt, C.W.F. et al., “Gravity Probe B: Final Results of a Space Experiment to Test General
Relativity”, Phys. Rev. Lett., 106, 221101 (2011). [![]() ![]() ![]() |
![]() |
170 | Fang, H. and Lovelace, G., “Tidal coupling of a Schwarzschild black hole and circularly orbiting
moon”, Phys. Rev. D, 72, 124016 (2005). [![]() ![]() ![]() |
![]() |
171 | Farmer, A.J. and Phinney, E.S., “The gravitational wave background from cosmological
compact binaries”, Mon. Not. R. Astron. Soc., 346, 1197–1214 (2003). [![]() ![]() ![]() |
![]() |
172 | Feroz, F., Gair, J.R., Hobson, M.P. and Porter, E.K., “Use of the MULTINEST algorithm
for gravitational wave data analysis”, Class. Quantum Grav., 26, 215003 (2009). [![]() ![]() ![]() |
![]() |
173 | Ferrarese, L. and Ford, H., “Supermassive Black Holes in Galactic Nuclei: Past, Present and
Future Research”, Space Sci. Rev., 116, 523–624 (2005). [![]() ![]() ![]() |
![]() |
174 | Ferrarese, L. and Merritt, D., “A Fundamental Relation between Supermassive Black
Holes and Their Host Galaxies”, Astrophys. J. Lett., 539, L9–L12 (2000). [![]() ![]() ![]() |
![]() |
175 | Fierz, M., “Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin”, Helv.
Phys. Acta, 12, 3–37 (1939). [![]() |
![]() |
176 | Fierz, M. and Pauli, W., “On relativistic wave equations for particles of arbitrary spin in an
electromagnetic field”, Proc. R. Soc. London, Ser. A, 173, 211–232 (1939). [![]() ![]() |
![]() |
177 | Finn, L.S., “Gravitational waves from solar oscillations: Proposal for a transition-zone test of
general relativity”, Class. Quantum Grav., 2, 381–402 (1985). [![]() ![]() |
![]() |
178 | Finn, L.S. and Sutton, P.J., “Bounding the mass of the graviton using binary pulsar
observations”, Phys. Rev. D, 65, 044022 (2002). [![]() ![]() ![]() |
![]() |
179 | Finn, L.S. and Thorne, K.S., “Gravitational waves from a compact star in a circular, inspiral
orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA”, Phys.
Rev. D, 62, 124021 (2000). [![]() ![]() ![]() |
![]() |
180 | Flanagan, É.É., “Higher-order gravity theories and scalar tensor theories”, Class. Quantum
Grav., 21, 417–426 (2004). [![]() ![]() ![]() |
![]() |
181 | Flanagan, É.É. and Hinderer, T., “Transient Resonances in the Inspirals of Point Particles
into Black Holes”, Phys. Rev. Lett., 109, 071102 (2012). [![]() ![]() ![]() |
![]() |
182 | Flanagan, É.É. and Hughes, S.A., “Measuring gravitational waves from binary black hole
coalescences. I. Signal to noise for inspiral, merger, and ringdown”, Phys. Rev. D, 57, 4535–4565
(1998). [![]() ![]() ![]() |
![]() |
183 | Fodor, G., Hoenselaers, C. and Perjés, Z., “Multipole moments of axisymmetric systems in
relativity”, J. Math. Phys., 30, 2252–2257 (1989). [![]() ![]() |
![]() |
184 | Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”,
Living Rev. Relativity, 11, lrr-2008-7 (2008). [![]() ![]() http://www.livingreviews.org/lrr-2008-7. |
![]() |
185 | Foster, B.Z., “Metric redefinitions in Einstein-Æther theory”, Phys. Rev. D, 72, 044017 (2005).
[![]() ![]() ![]() |
![]() |
186 | Freire, P.C.C. et al., “The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The
most stringent test of scalar-tensor gravity”, Mon. Not. R. Astron. Soc., 423, 3328–3343 (2012).
[![]() ![]() ![]() |
![]() |
187 | Freitag, M., “Gravitational Waves from Stars Orbiting the Sagittarius A* Black Hole”,
Astrophys. J. Lett., 583, L21–L24 (2003). [![]() ![]() ![]() |
![]() |
188 | Freitag, M., Amaro-Seoane, P. and Kalogera, V., “Stellar Remnants in Galactic Nuclei: Mass
Segregation”, Astrophys. J., 649, 91–117 (2006). [![]() ![]() ![]() |
![]() |
189 | Furtado, C., Nascimento, J.R., Petrov, A.Y. and Santos, A.F., “Dynamical Chern-Simons
modified gravity and Friedmann-Robertson-Walker metric”, arXiv, e-print, (2010). [![]() ![]() |
![]() |
190 | Futamase, T. and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact
Binaries”, Living Rev. Relativity, 10, lrr-2007-2 (2007). [![]() ![]() http://www.livingreviews.org/lrr-2007-2. |
![]() |
191 | Gair, J.R., “The black hole symphony: probing new physics using gravitational waves”, Philos.
Trans. R. Soc. London, Ser. A, 366, 4365–4379 (2008). [![]() ![]() |
![]() |
192 | Gair, J.R., “Probing black holes at low redshift using LISA EMRI observations”, Class.
Quantum Grav., 26, 094034 (2009). [![]() ![]() ![]() |
![]() |
193 | Gair, J.R., Barack, L., Creighton, T., Cutler, C., Larson, S.L., Phinney, E.S. and Vallisneri, M.,
“Event rate estimates for LISA extreme mass ratio capture sources”, Class. Quantum Grav.,
21, S1595–S1606 (2004). [![]() ![]() ![]() |
![]() |
194 | Gair, J.R. and Jones, G., “Detecting extreme mass ratio inspiral events in LISA data using the
hierarchical algorithm for clusters and ridges (HACR)”, Class. Quantum Grav., 24, 1145–1168
(2007). [![]() ![]() ![]() |
![]() |
195 | Gair, J.R., Li, C. and Mandel, I., “Observable properties of orbits in exact bumpy spacetimes”,
Phys. Rev. D, 77, 024035 (2008). [![]() ![]() ![]() |
![]() |
196 | Gair, J.R. and Porter, E.K., “Cosmic swarms: a search for supermassive black holes in the
LISA data stream with a hybrid evolutionary algorithm”, Class. Quantum Grav., 26, 225004
(2009). [![]() ![]() ![]() |
![]() |
197 | Gair, J.R and Porter, E.K, “Observing extreme-mass-ratio inspirals with eLISA/NGO”, arXiv,
e-print, (2012). [![]() ![]() |
![]() |
198 | Gair, J.R., Sesana, A., Berti, E. and Volonteri, M., “Constraining properties of the black
hole population using LISA”, Class. Quantum Grav., 28, 094018 (2011). [![]() ![]() ![]() |
![]() |
199 | Gair, J.R., Tang, C. and Volonteri, M., “LISA extreme-mass-ratio inspiral events as probes of
the black hole mass function”, Phys. Rev. D, 81, 104014 (2010). [![]() ![]() ![]() |
![]() |
200 | Gair, J.R. and Wen, L., “Detecting extreme mass ratio inspirals with LISA using
time–frequency methods: II. Search characterization”, Class. Quantum Grav., 22, S1359–S1371
(2005). [![]() ![]() ![]() |
![]() |
201 | Gair, J.R. and Yunes, N., “Approximate waveforms for extreme-mass-ratio inspirals in modified
gravity spacetimes”, Phys. Rev. D, 84, 064016 (2011). [![]() ![]() ![]() |
![]() |
202 | Gasperini, M., “Singularity prevention and broken Lorentz symmetry”, Class. Quantum Grav.,
4, 485–494 (1987). [![]() ![]() |
![]() |
203 | “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for
Gravitational Physics (Albert Einstein Institute). URL (accessed 26 July 2013): ![]() |
![]() |
204 | Geroch, R., “Multipole Moments. II. Curved Space”, J. Math. Phys., 11, 2580–2588 (1970).
[![]() ![]() |
![]() |
205 | Ghez, A.M. et al., “Measuring Distance and Properties of the Milky Way’s Central
Supermassive Black Hole with Stellar Orbits”, Astrophys. J., 689, 1044–1062 (2008). [![]() ![]() ![]() |
![]() |
206 | Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F. and Ott, T.,
“Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center”, Astrophys.
J., 692, 1075–1109 (2009). [![]() ![]() ![]() |
![]() |
207 | Glampedakis, K. and Babak, S., “Mapping spacetimes with LISA: inspiral of a test
body in a ’quasi-Kerr’ field”, Class. Quantum Grav., 23, 4167–4188 (2006). [![]() ![]() ![]() |
![]() |
208 | Goldberger, W.D. and Rothstein, I.Z., “Towers of gravitational theories”, Gen. Relativ. Gravit.,
38, 1537–1546 (2006). [![]() ![]() |
![]() |
209 | Goldhaber, A.S. and Nieto, M.M., “Photon and graviton mass limits”, Rev. Mod. Phys., 82,
939–979 (2010). [![]() ![]() ![]() |
![]() |
210 | Gossan, S., Veitch, J. and Sathyaprakash, B.S., “Bayesian model selection for testing the
no-hair theorem with black hole ringdowns”, Phys. Rev. D, 85, 124056 (2012). [![]() ![]() ![]() |
![]() |
211 | Gregory, P.C., Bayesian Logical Data Analysis for the Physical Sciences: A Comparative
Approach with ‘Mathematica’ Support, (Cambridge University Press, Cambridge; New York,
2005). [![]() |
![]() |
212 | Grumiller, D. and Yunes, N., “How do black holes spin in Chern-Simons modified gravity?”,
Phys. Rev. D, 77, 044015 (2008). [![]() ![]() ![]() |
![]() |
213 | Guéron, E. and Letelier, P.S., “Chaos in pseudo-Newtonian black holes with halos”, Astron.
Astrophys., 368, 716–720 (2001). [![]() ![]() ![]() |
![]() |
214 | Guéron, E. and Letelier, P.S., “Geodesic chaos around quadrupolar deformed centers of
attraction”, Phys. Rev. E, 66, 046611 (2002). [![]() ![]() |
![]() |
215 | GW Community Science Team, Core Team, and GW Science Task Force, Gravitational-Wave
Mission Concept Study Final Report, (NASA, Washington, DC; Greenbelt, MD, 2012). Online
version (accessed 26 July 2013): ![]() |
![]() |
216 | Haehnelt, M.G. and Kauffmann, G., “The correlation between black hole mass and bulge
velocity dispersion in hierarchical galaxy formation models”, Mon. Not. R. Astron. Soc., 318,
L35–L38 (2000). [![]() ![]() ![]() |
![]() |
217 | Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46–52
(1974). [![]() ![]() |
![]() |
218 | Harko, T., Kovács, Z. and Lobo, F.S.N., “Thin accretion disk signatures in dynamical
Chern-Simons-modified gravity”, Class. Quantum Grav., 27, 105010 (2010). [![]() ![]() ![]() |
![]() |
219 | Harry, G.M., “Advanced LIGO: the next generation of gravitational wave detectors”, Class.
Quantum Grav., 27, 084006 (2010). [![]() ![]() |
![]() |
220 | Hartle, J.B., “Slowly Rotating Relativistic Stars. I. Equations of Structure”, Astrophys. J.,
150, 1005–1029 (1967). [![]() ![]() |
![]() |
221 | Hartle, J.B. and Thorne, K.S., “Slowly Rotating Relativistic Stars. II. Models for Neutron
Stars and Supermassive Stars”, Astrophys. J., 153, 807–834 (1968). [![]() ![]() |
![]() |
222 | Haugan, M.P. and Lämmerzahl, C., “Principles of Equivalence: Their Role in Gravitation
Physics and Experiments That Test Them”, in Lämmerzahl, C., Everitt, C.W.F. and Hehl,
F.W., eds., Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, Proceedings
of a meeting held at Bad Honnef, Germany, 21 – 7 August 1999, Lecture Notes in Physics, 562,
pp. 195–212, (Springer, Berlin; New York, 2001). [![]() ![]() |
![]() |
223 | Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge
Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [![]() ![]() |
![]() |
224 | Hawking, S.W. and Penrose, R., “The Singularities of Gravitational Collapse and Cosmology”,
Proc. R. Soc. London, Ser. A, 314, 529–548 (1970). [![]() ![]() |
![]() |
225 | Hayama, K. and Nishizawa, A., “Model-independent test of gravity with a network of
ground-based gravitational-wave detectors”, Phys. Rev. D, 87, 062003 (2013). [![]() ![]() ![]() |
![]() |
226 | Healy, J., Bode, T., Haas, R., Pazos, E., Laguna, P., Shoemaker, D.M. and Yunes, N., “Late
Inspiral and Merger of Binary Black Holes in Scalar-Tensor Theories of Gravity”, arXiv, e-print,
(2011). [![]() ![]() |
![]() |
227 | Hellings, R.W., “Testing relativistic theories of gravity with spacecraft-Doppler gravity-wave
detection”, Phys. Rev. D, 17, 3158–3163 (1978). [![]() ![]() |
![]() |
228 | Hellings, R.W. and Downs, G.S., “Upper limits on the isotropic gravitational radiation
background from pulsar timing analysis”, Astrophys. J. Lett., 265, L39–L42 (1983). [![]() ![]() |
![]() |
229 | Hellings, R., Larson, S.L., Jensen, S., Fish, C., Benacquista, M., Cornish, N.J. and Lang, R.N.,
A Low-Cost, High-Performance Space Gravitational Astronomy Mission, (NASA/Goddard
Space Flight Center, Greenbelt, MD, 2011). Online version (accessed 26 July 2013): ![]() |
![]() |
230 | Hermes, J.J. et al., “Rapid Orbital Decay in the 12.75-minute Binary White Dwarf
J0651+2844”, Astrophys. J. Lett., 757, L21 (2012). [![]() ![]() ![]() |
![]() |
231 | Hils, D. and Bender, P.L., “Gravitational Radiation from Helium Cataclysmics”, Astrophys.
J., 537, 334–341 (2000). [![]() ![]() |
![]() |
232 | Hobbs, G. et al., “The International Pulsar Timing Array project: using pulsars as a
gravitational wave detector”, Class. Quantum Grav., 27, 084013 (2010). [![]() ![]() ![]() |
![]() |
233 | Holley-Bockelmann, K., Mihos, J.C., Sigurdsson, S., Hernquist, L. and Norman, C., “The
Evolution of Cuspy Triaxial Galaxies Harboring Central Black Holes”, Astrophys. J., 567,
817–827 (2002). [![]() ![]() ![]() |
![]() |
234 | Holz, D.E. and Hughes, S.A., “Using Gravitational-Wave Standard Sirens”, Astrophys. J., 629,
15–22 (2005). [![]() ![]() ![]() |
![]() |
235 | Hopman, C., “Extreme mass ratio inspiral rates: dependence on the massive black hole mass”,
Class. Quantum Grav., 26, 094028 (2009). [![]() ![]() ![]() |
![]() |
236 | Hopman, C., Freitag, M. and Larson, S.L., “Gravitational wave bursts from the Galactic
massive black hole”, Mon. Not. R. Astron. Soc., 378, 129–136 (2007). [![]() ![]() ![]() |
![]() |
237 | Horbatsch, M.W. and Burgess, C.P., “Cosmic black-hole hair growth and quasar OJ287”, J.
Cosmol. Astropart. Phys., 2012(05), 010 (2012). [![]() ![]() ![]() |
![]() |
238 | Huerta, E.A. and Gair, J.R., “Influence of conservative corrections on parameter estimation for
extreme-mass-ratio inspirals”, Phys. Rev. D, 79, 084021 (2009). [![]() ![]() ![]() |
![]() |
239 | Huerta, E.A. and Gair, J.R., “Intermediate-mass-ratio inspirals in the Einstein Telescope.
I. Signal-to-noise ratio calculations”, Phys. Rev. D, 83, 044020 (2011). [![]() ![]() ![]() |
![]() |
240 | Huerta, E.A. and Gair, J.R., “Intermediate-mass-ratio inspirals in the Einstein Telescope. II.
Parameter estimation errors”, Phys. Rev. D, 83, 044021 (2011). [![]() ![]() ![]() |
![]() |
241 | Hughes, S.A., “Untangling the merger history of massive black holes with LISA”, Mon. Not.
R. Astron. Soc., 331, 805–816 (2002). [![]() ![]() ![]() |
![]() |
242 | Hughes, S.A. and Blandford, R.D., “Black Hole Mass and Spin Coevolution by Mergers”,
Astrophys. J. Lett., 585, L101–L104 (2003). [![]() ![]() ![]() |
![]() |
243 | Hughes, S.A. and Menou, K., “Golden Binary Gravitational-Wave Sources: Robust
Probes of Strong-Field Gravity”, Astrophys. J., 623, 689–699 (2005). [![]() ![]() ![]() |
![]() |
244 | Huwyler, C., Klein, A. and Jetzer, P., “Testing general relativity with LISA including spin
precession and higher harmonics in the waveform”, Phys. Rev. D, 86, 084028 (2012). [![]() ![]() ![]() |
![]() |
245 | Iben Jr, I. and Tutukov, A.V., “The evolution of low-mass close binaries influenced by the
radiation of gravitational waves and by a magnetic stellar wind”, Astrophys. J., 284, 719–744
(1984). [![]() ![]() |
![]() |
246 | Iben Jr, I. and Tutukov, A.V., “On the number-mass distribution of degenerate dwarfs
produced by interacting binaries and evidence for mergers of low-mass helium dwarfs”,
Astrophys. J., 311, 753–761 (1986). [![]() ![]() |
![]() |
247 | Islam, R.R., Taylor, J.E. and Silk, J., “Massive black hole remnants of the first stars in galactic
haloes”, Mon. Not. R. Astron. Soc., 340, 647–656 (2003). [![]() ![]() ![]() |
![]() |
248 | Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev., 164, 1776–1779
(1967). [![]() ![]() |
![]() |
249 | Jackiw, R. and Pi, S.-Y., “Chern-Simons modification of general relativity”, Phys. Rev. D, 68,
104012 (2003). [![]() ![]() ![]() |
![]() |
250 | Jacobson, T., “Einstein-æther gravity: a status report”, in From Quantum to Emergent
Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science,
PoS(QG-Ph)020, (SISSA, Trieste, 2008). [![]() ![]() ![]() |
![]() |
251 | Jaranowski, P. and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample
Applications: The Gaussian Case”, Living Rev. Relativity, 15, lrr-2012-4 (2012). [![]() ![]() http://www.livingreviews.org/lrr-2012-4. |
![]() |
252 | Jennrich, O., “LISA technology and instrumentation”, Class. Quantum Grav., 26, 153001
(2009). [![]() ![]() |
![]() |
253 | Jones, D.I., “Bounding the Mass of the Graviton Using Eccentric Binaries”, Astrophys. J. Lett.,
618, L115–L118 (2005). [![]() ![]() ![]() |
![]() |
254 | “KAGRA: Large-scale Cryogenic Gravitational Wave Telescope Project”, project homepage,
Institute for Cosmic Ray Research (ICRR). URL (accessed 26 July 2013): ![]() |
![]() |
255 | Kamaretsos, I., Hannam, M., Husa, S. and Sathyaprakash, B.S., “Black-hole hair loss: Learning
about binary progenitors from ringdown signals”, Phys. Rev. D, 85, 024018 (2012). [![]() ![]() ![]() |
![]() |
256 | Kawamura, S. et al. (DECIGO Collaboration), “The Japanese space gravitational wave
antenna – DECIGO”, Class. Quantum Grav., 23, S125–S131 (2006). [![]() ![]() |
![]() |
257 | Kawamura, S. et al. (DECIGO Collaboration), “The Japanese space gravitational wave
antenna: DECIGO”, Class. Quantum Grav., 28, 094011 (2011). [![]() ![]() |
![]() |
258 | Kennefick, D., Traveling at the Speed of Thought: Einstein and the Quest for Gravitational
Waves, (Princeton University Press, Princeton; Woodstock, UK, 2007). [![]() |
![]() |
259 | Keppel, D. and Ajith, P., “Constraining the mass of the graviton using coalescing black-hole
binaries”, Phys. Rev. D, 82, 122001 (2010). [![]() ![]() ![]() |
![]() |
260 | Kerr, R.P., “Gravitational Field of a Spinning Mass as an Example of Algebraically Special
Metrics”, Phys. Rev. Lett., 11, 237–238 (1963). [![]() ![]() |
![]() |
261 | Kesden, M., Gair, J.R. and Kamionkowski, M., “Gravitational-wave signature of an inspiral
into a supermassive horizonless object”, Phys. Rev. D, 71, 044015 (2005). [![]() ![]() ![]() |
![]() |
262 | Khoury, J. and Weltman, A., “Chameleon Fields: Awaiting Surprises for Tests of Gravity in
Space”, Phys. Rev. Lett., 93, 171104 (2004). [![]() ![]() ![]() |
![]() |
263 | Kidder, L.E., Will, C.M. and Wiseman, A.G., “Coalescing binary systems of compact objects
to (post)5∕2-Newtonian order. III. Transition from inspiral to plunge”, Phys. Rev. D, 47,
3281–3291 (1993). [![]() ![]() |
![]() |
264 | Kim, H. and Kim, W.-T., “Dynamical Friction of a Circular-Orbit Perturber in a Gaseous
Medium”, Astrophys. J., 665, 432–444 (2007). [![]() ![]() ![]() |
![]() |
265 | Kleihaus, B., Kunz, J., Sood, A. and Wirschins, M., “Sequences of globally regular and black
hole solutions in SU(4) Einstein-Yang-Mills theory”, Phys. Rev. D, 58, 084006 (1998). [![]() ![]() ![]() |
![]() |
266 | Klein, A., Jetzer, P. and Sereno, M., “Parameter estimation for coalescing massive binary
black holes with LISA using the full 2-post-Newtonian gravitational waveform and spin-orbit
precession”, Phys. Rev. D, 80, 064027 (2009). [![]() ![]() ![]() |
![]() |
267 | Kocsis, B., Haiman, Z. and Menou, K., “Premerger Localization of Gravitational Wave
Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart”, Astrophys.
J., 684, 870–887 (2008). [![]() ![]() ![]() |
![]() |
268 | Kocsis, B., Yunes, N. and Loeb, A., “Observable signatures of extreme mass-ratio inspiral black
hole binaries embedded in thin accretion disks”, Phys. Rev. D, 84, 024032 (2011). [![]() ![]() ![]() |
![]() |
269 | Kodama, H. and Yoshino, H., “Axiverse and Black Hole”, Int. J. Mod. Phys.: Conf. Ser., 7,
84–115 (2012). [![]() ![]() ![]() |
![]() |
270 | Kokkotas, K. and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev.
Relativity, 2, lrr-1999-2 (1999). [![]() ![]() ![]() http://www.livingreviews.org/lrr-1999-2. |
![]() |
271 | Komatsu, E. et al. (WMAP Collaboration), “Seven-year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Cosmological Interpretation”, Astrophys. J. Suppl. Ser., 192,
18 (2011). [![]() ![]() ![]() |
![]() |
272 | Konno, K., Matsuyama, T. and Tanda, S., “Rotating Black Hole in Extended Chern-Simons
Modified Gravity”, Prog. Theor. Phys., 122, 561–568 (2009). [![]() ![]() ![]() |
![]() |
273 | Krolik, J.H., Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment,
Princeton Series in Astrophysics, (Princeton University Press, Princeton, NJ, 1999). [![]() |
![]() |
274 | Kuroyanagi, S., Nakayama, K. and Saito, S., “Prospects for determination of thermal history
after inflation with future gravitational wave detectors”, Phys. Rev. D, 84, 123513 (2011).
[![]() ![]() ![]() |
![]() |
275 | Laguna, P., “Probing space-time through numerical simulations”, in Ashtekar, A., ed., 100
Years of Relativity. Space-Time Structure: Einstein and Beyond, pp. 152–174, (World Scientific,
Singapore; Hackensack, NJ, 2005). [![]() ![]() |
![]() |
276 | Lamoreaux, S.K., Jacobs, J.P., Heckel, B.R., Raab, F.J. and Fortson, E.N., “New limits on
spatial anisotropy from optically-pumped 201Hg and 199Hg”, Phys. Rev. Lett., 57, 3125–3128
(1986). [![]() ![]() |
![]() |
277 | Larson, S.L., “Online Sensitivity Curve Generator”, project homepage, Caltech. URL (accessed
26 July 2013): ![]() |
![]() |
278 | Larson, S.L. and Finn, L.S., “The resolving power of LISA: comparing techniques for binary
analysis”, in Merkowitz, S.M. and Livas, J.C., eds., Laser Interferometer Space Antenna:
6th International LISA Symposium, Proceedings of the 6th International LISA Symposium,
Greenbelt, MD, USA, 19 – 23 June 2006, AIP Conference Series, 873, pp. 415–421, (American
Institute of Physics, Melville, NY, 2006). [![]() ![]() |
![]() |
279 | Larson, S.L. and Hiscock, W.A., “Using binary stars to bound the mass of the graviton”, Phys.
Rev. D, 61, 104008 (2000). [![]() ![]() ![]() |
![]() |
280 | Lee, K.J., Jenet, F.A. and Price, R.H., “Pulsar Timing as a Probe of Non-Einsteinian
Polarizations of Gravitational Waves”, Astrophys. J., 685, 1304–1319 (2008). [![]() ![]() |
![]() |
281 | Lee, K., Jenet, F.A., Price, R.H., Wex, N. and Kramer, M., “Detecting Massive Gravitons Using
Pulsar Timing Arrays”, Astrophys. J., 722, 1589–1597 (2010). [![]() ![]() ![]() |
![]() |
282 | Letelier, P.S. and Vieira, W.M., “Chaos in black holes surrounded by gravitational waves”,
Class. Quantum Grav., 14, 1249–1257 (1997). [![]() ![]() ![]() |
![]() |
283 | Li, C. and Lovelace, G., “A generalization of Ryan’s theorem: probing tidal coupling with
gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals”, Phys.
Rev. D, 77, 064022 (2008). [![]() ![]() ![]() |
![]() |
284 | Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity using
compact binary coalescence”, Phys. Rev. D, 85, 082003 (2012). [![]() ![]() ![]() |
![]() |
285 | Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity
using compact binary coalescence: Further investigations”, J. Phys.: Conf. Ser., 363, 012028
(2012). [![]() ![]() ![]() |
![]() |
286 | Lightman, A.P. and Eardley, D.M., “Black Holes in Binary Systems: Instability of Disk
Accretion”, Astrophys. J. Lett., 187, L1 (1974). [![]() ![]() |
![]() |
287 | Lightman, A.P. and Lee, D.L., “New Two-Metric Theory of Gravity with Prior Geometry”,
Phys. Rev. D, 8, 3293–3302 (1973). [![]() ![]() |
![]() |
288 | “LIGO - Laser Interferometer Gravitational Wave Observatory”, project homepage, California
Institute of Technology. URL (accessed 26 July 2013): ![]() |
![]() |
289 | Lincoln, C.W. and Will, C.M., “Coalescing binary systems of compact objects to
(post)5∕2-Newtonian order: Late-time evolution and gravitational-radiation emission”, Phys.
Rev. D, 42, 1123–1143 (1990). [![]() ![]() |
![]() |
290 | Littenberg, T.B., “Detection pipeline for Galactic binaries in LISA data”, Phys. Rev. D, 84,
063009 (2011). [![]() ![]() ![]() |
![]() |
291 | Littenberg, T.B. and Cornish, N.J., “Bayesian approach to the detection problem in
gravitational wave astronomy”, Phys. Rev. D, 80, 063007 (2009). [![]() ![]() ![]() |
![]() |
292 | Lobo, J.A., “Spherical GW detectors and geometry”, in Coccia, E., Veneziano, G. and Pizzella,
G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the
conference, held at CERN, Switzerland, 1 – 4 July, 1997, Edoardo Amaldi Foundation Series,
pp. 168–179, (World Scientific, Singapore, 1998). [![]() |
![]() |
293 | Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8 (2008).
[![]() ![]() ![]() http://www.livingreviews.org/lrr-2008-8. |
![]() |
294 | Lukes-Gerakopoulos, G., Apostolatos, T.A. and Contopoulos, G., “Observable signature of a
background deviating from the Kerr metric”, Phys. Rev. D, 81, 124005 (2010). [![]() ![]() ![]() |
![]() |
295 | Luna, M. and Sintes, A.M., “Parameter estimation of compact binaries using the inspiral
and ringdown waveforms”, Class. Quantum Grav., 23, 3763–3782 (2006). [![]() ![]() ![]() |
![]() |
296 | Lynden-Bell, D. and Rees, M.J., “On quasars, dust and the galactic centre”, Mon. Not. R.
Astron. Soc., 152, 461 (1971). [![]() |
![]() |
297 | Macedo, C.F.B., Pani, P., Cardoso, V. and Crispino, L.C.B., “Into the lair: gravitational-wave
signatures of dark matter”, Astrophys. J., 774, 48 (2013). [![]() ![]() ![]() |
![]() |
298 | Madau, P. and Rees, M.J., “Massive Black Holes as Population III Remnants”, Astrophys. J.
Lett., 551, L27–L30 (2001). [![]() ![]() ![]() |
![]() |
299 | Maggiore, M., Gravitational Waves. Vol. 1: Theory and Experiments, (Oxford University Press, Oxford; New York, 2008). |
![]() |
300 | Maggiore, M. and Nicolis, A., “Detection strategies for scalar gravitational waves with
interferometers and resonant spheres”, Phys. Rev. D, 62, 024004 (2000). [![]() ![]() ![]() |
![]() |
301 | Magueijo, J. and Mozaffari, A., “Case for testing modified Newtonian dynamics using LISA
pathfinder”, Phys. Rev. D, 85, 043527 (2012). [![]() ![]() ![]() |
![]() |
302 | Mandel, I., Brown, D.A., Gair, J.R. and Miller, M.C., “Rates and Characteristics of
Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO”, Astrophys. J., 681,
1431–1447 (2008). [![]() ![]() ![]() |
![]() |
303 | Manko, V.S. and Novikov, I.D., “Generalizations of the Kerr and Kerr-Newman metrics
possessing an arbitrary set of mass-multipole moments”, Class. Quantum Grav., 9, 2477–2487
(1992). [![]() ![]() |
![]() |
304 | McKenzie, K. et al., LAGRANGE: A Space-Based Gravitational-Wave Detector with
Geometric Suppression of Spacecraft Noise, (NASA/Goddard Space Flight Center, Greenbelt,
MD, 2011). Online version (accessed 26 July 2013): ![]() |
![]() |
305 | McNamara, P., Vitale, S. and Danzmann, K. (LISA Pathfinder Science Working Team), “LISA
Pathfinder”, Class. Quantum Grav., 25, 114034 (2008). [![]() ![]() |
![]() |
306 | McWilliams, S.T., “Constraining the Braneworld with Gravitational Wave Observations”,
Phys. Rev. Lett., 104, 141601 (2010). [![]() ![]() ![]() |
![]() |
307 | McWilliams, S.T., Lang, R.N., Baker, J.G. and Thorpe, J.I., “Sky localization of complete
inspiral-merger-ringdown signals for nonspinning massive black hole binaries”, Phys. Rev. D,
84, 064003 (2011). [![]() ![]() ![]() |
![]() |
308 | Menou, K., Haiman, Z. and Narayanan, V.K., “The Merger History of Supermassive Black
Holes in Galaxies”, Astrophys. J., 558, 535–542 (2001). [![]() ![]() ![]() |
![]() |
309 | Merkowitz, S.M., “Tests of Gravity Using Lunar Laser Ranging”, Living Rev. Relativity, 13,
lrr-2010-7 (2010). [![]() ![]() http://www.livingreviews.org/lrr-2010-7. |
![]() |
310 | Merritt, D., Alexander, T., Mikkola, S. and Will, C.M., “Stellar dynamics of extreme-mass-ratio
inspirals”, Phys. Rev. D, 84, 044024 (2011). [![]() ![]() ![]() |
![]() |
311 | Mignemi, S. and Stewart, N.R., “Dilaton-axion hair for slowly rotating Kerr black holes”, Phys.
Lett. B, 298, 299–304 (1993). [![]() ![]() ![]() |
![]() |
312 | Miller, M.C., Freitag, M., Hamilton, D.P. and Lauburg, V.M., “Binary Encounters with
Supermassive Black Holes: Zero-Eccentricity LISA Events”, Astrophys. J. Lett., 631,
L117–L120 (2005). [![]() ![]() ![]() |
![]() |
313 | Miralda-Escudé, J. and Gould, A., “A Cluster of Black Holes at the Galactic Center”,
Astrophys. J., 545, 847–853 (2000). [![]() ![]() ![]() |
![]() |
314 | Mirshekari, S., Yunes, N. and Will, C.M., “Constraining Lorentz-violating, modified dispersion
relations with gravitational waves”, Phys. Rev. D, 85, 024041 (2012). [![]() ![]() ![]() |
![]() |
315 | Mishra, C.K., Arun, K.G., Iyer, B.R. and Sathyaprakash, B.S., “Parametrized tests of
post-Newtonian theory using Advanced LIGO and Einstein Telescope”, Phys. Rev. D, 82,
064010 (2010). [![]() ![]() ![]() |
![]() |
316 | Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P. and Inoue, M.,
“Evidence for a Black-Hole from High Rotation Velocities in a Sub-Parsec Region of NGC4258”,
Nature, 373, 127–129 (1995). [![]() ![]() |
![]() |
317 | Moffat, J.W., “Scalar-tensor-vector gravity theory”, J. Cosmol. Astropart. Phys., 2006(03),
004 (2006). [![]() ![]() ![]() |
![]() |
318 | Moffat, J.W. and Toth, V.T., “Modified Gravity: Cosmology without dark matter or Einstein’s
cosmological constant”, arXiv, e-print, (2007). [![]() ![]() |
![]() |
319 | Moffat, J.W. and Toth, V.T., “Testing Modified Gravity with Globular Cluster Velocity
Dispersions”, Astrophys. J., 680, 1158–1161 (2008). [![]() ![]() ![]() |
![]() |
320 | Molina, C., Pani, P., Cardoso, V. and Gualtieri, L., “Gravitational signature of Schwarzschild
black holes in dynamical Chern-Simons gravity”, Phys. Rev. D, 81, 124021 (2010). [![]() ![]() ![]() |
![]() |
321 | Moore, C.J., Cole, R.H. and Berry, C.P.L., “Gravitational Wave Sensitivity Curve Plotter”,
project homepage, University of Cambridge. URL (accessed 26 July 2013): ![]() |
![]() |
322 | Moore, T.A. and Hellings, R.W., “Angular resolution of space-based gravitational wave
detectors”, Phys. Rev. D, 65, 062001 (2002). [![]() ![]() ![]() |
![]() |
323 | Motohashi, H. and Suyama, T., “Black hole perturbation in nondynamical and dynamical
Chern-Simons gravity”, Phys. Rev. D, 85, 044054 (2012). [![]() ![]() ![]() |
![]() |
324 | Nakao, K.-I., Harada, T., Shibata, M., Kawamura, S. and Nakamura, T., “Response of
interferometric detectors to scalar gravitational waves”, Phys. Rev. D, 63, 082001 (2001). [![]() ![]() ![]() |
![]() |
325 | Nakayama, K., Saito, S., Suwa, Y. and Yokoyama, J., “Space-based gravitational-wave detectors
can determine the thermal history of the early Universe”, Phys. Rev. D, 77, 124001 (2008).
[![]() ![]() ![]() |
![]() |
326 | Narayan, R., “Hydrodynamic Drag on a Compact Star Orbiting a Supermassive Black Hole”,
Astrophys. J., 536, 663–667 (2000). [![]() ![]() ![]() |
![]() |
327 | Nelemans, G., “LISA Verification Binaries”, web interface to database, Radboud University.
URL (accessed 26 July 2013): ![]() |
![]() |
328 | Nelemans, G., Portegies Zwart, S.F., Verbunt, F. and Yungelson, L.R., “Population synthesis
for double white dwarfs. II. Semi-detached systems: AM CVn stars”, Astron. Astrophys., 368,
939–949 (2001). [![]() ![]() ![]() |
![]() |
329 | Nelemans, G., Yungelson, L.R. and Portegies Zwart, S.F., “The gravitational wave signal from
the Galactic disk population of binaries containing two compact objects”, Astron. Astrophys.,
375, 890–898 (2001). [![]() ![]() ![]() |
![]() |
330 | Nelemans, G., Yungelson, L.R., Portegies Zwart, S.F. and Verbunt, F., “Population synthesis
for double white dwarfs. I. Close detached systems”, Astron. Astrophys., 365, 491–507 (2001).
[![]() ![]() ![]() |
![]() |
331 | Nishizawa, A., Taruya, A., Hayama, K., Kawamura, S. and Sakagami, M.-A., “Probing
nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser
interferometers”, Phys. Rev. D, 79, 082002 (2009). [![]() ![]() ![]() |
![]() |
332 | Nishizawa, A., Taruya, A. and Kawamura, S., “Cosmological test of gravity with polarizations
of stochastic gravitational waves around 0.1–1 Hz”, Phys. Rev. D, 81, 104043 (2010). [![]() ![]() ![]() |
![]() |
333 | Nishizawa, A., Taruya, A. and Saito, S., “Tracing the redshift evolution of Hubble parameter
with gravitational-wave standard sirens”, Phys. Rev. D, 83, 084045 (2011). [![]() ![]() ![]() |
![]() |
334 | Nishizawa, A., Yagi, K., Taruya, A. and Tanaka, T., “Gravitational-wave standard siren without
redshift identification”, J. Phys.: Conf. Ser., 363, 012052 (2012). [![]() ![]() ![]() |
![]() |
335 | Nissanke, S., Vallisneri, M., Nelemans, G. and Prince, T.A., “Gravitational-wave Emission
from Compact Galactic Binaries”, Astrophys. J., 758, 131 (2012). [![]() ![]() ![]() |
![]() |
336 | Nojiri, S. and Odintsov, S.D., “Introduction to Modified Gravity and Gravitational Alternative
for Dark Energy”, Int. J. Geom. Meth. Mod. Phys., 4, 115–145 (2007). [![]() ![]() |
![]() |
337 | Nollert, H.-P., “Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars”,
Class. Quantum Grav., 16, 159 (1999). [![]() ![]() |
![]() |
338 | Norton, J., “What was Einstein’s principle of equivalence?”, in Howard, D. and Stachel, J.,
eds., Einstein and the History of General Relativity, Based on the proceedings of the 1986
Osgood Hill Conference, North Andover, Massachusetts, 8 – 11 May, Einstein Studies, 1, pp.
5–47, (Birkhäuser, Boston; Basel, 1989). [![]() |
![]() |
339 | Norton, J.D., “General covariance and the foundations of general relativity: eight decades of
dispute”, Rep. Prog. Phys., 56, 791–858 (1993). [![]() ![]() |
![]() |
340 | Okawara, H., Yamada, K. and Asada, H., “Possible Daily and Seasonal Variations in Quantum
Interference Induced by Chern-Simons Gravity”, Phys. Rev. Lett., 109, 231101 (2012). [![]() ![]() ![]() |
![]() |
341 | Oppenheimer, J.R. and Snyder, H., “On Continued Gravitational Contraction”, Phys. Rev.,
56, 455–459 (1939). [![]() ![]() |
![]() |
342 | Pai, A. and Arun, K.G., “Singular value decomposition in parametrized tests of post-Newtonian
theory”, Class. Quantum Grav., 30, 025011 (2013). [![]() ![]() ![]() |
![]() |
343 | Paik, H.J., “Response of a disk antenna to scalar and tensor gravitational waves”, Phys. Rev.
D, 15, 409–415 (1977). [![]() ![]() |
![]() |
344 | Pan, Y., Buonanno, A., Boyle, M., Buchman, L.T., Kidder, L.E., Pfeiffer, H.P. and Scheel, M.A.,
“Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the
effective-one-body formalism”, Phys. Rev. D, 84, 124052 (2011). [![]() ![]() ![]() |
![]() |
345 | Pan, Y., Buonanno, A., Buchman, L.T., Chu, T., Kidder, L.E., Pfeiffer, H.P. and Scheel, M.A.,
“Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of
nonprecessing, spinning, equal-mass black holes”, Phys. Rev. D, 81, 084041 (2010). [![]() ![]() ![]() |
![]() |
346 | Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the
absence of an event horizon: Nonradial oscillations of a thin-shell gravastar”, Phys. Rev. D, 80,
124047 (2009). [![]() ![]() ![]() |
![]() |
347 | Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the
absence of an event horizon. II. Extreme mass ratio inspirals in the spacetime of a thin-shell
gravastar”, Phys. Rev. D, 81, 084011 (2010). [![]() ![]() ![]() |
![]() |
348 | Pani, P., Cardoso, V. and Gualtieri, L., “Gravitational waves from extreme mass-ratio
inspirals in dynamical Chern-Simons gravity”, Phys. Rev. D, 83, 104048 (2011). [![]() ![]() ![]() |
![]() |
349 | Pani, P., Macedo, C.F.B., Crispino, L.C.B. and Cardoso, V., “Slowly rotating black holes in
alternative theories of gravity”, Phys. Rev. D, 84, 087501 (2011). [![]() ![]() ![]() |
![]() |
350 | Pauli, W. and Fierz, M., “Über relativistische Feldgleichungen von Teilchen mit beliebigem Spin im elektromagnetischen Feld”, Helv. Phys. Acta, 12, 297–300 (1939). |
![]() |
351 | Penrose, R., “Gravitational Collapse and Space-Time Singularities”, Phys. Rev. Lett., 14, 57–59
(1965). [![]() ![]() |
![]() |
352 | Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento,
1, 252–276 (1969). [![]() |
![]() |
353 | Peters, P.C., “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev., 136,
B1224–B1232 (1964). [![]() ![]() |
![]() |
354 | Peters, P.C. and Mathews, J., “Gravitational Radiation from Point Masses in a Keplerian
Orbit”, Phys. Rev., 131, 435–440 (1963). [![]() ![]() |
![]() |
355 | Petiteau, A., Babak, S. and Sesana, A., “Constraining the Dark Energy Equation of State
Using LISA Observations of Spinning Massive Black Hole Binaries”, Astrophys. J., 732, 82
(2011). [![]() ![]() ![]() |
![]() |
356 | Petiteau, A., Shang, Y., Babak, S. and Feroz, F., “Search for spinning black hole binaries in
mock LISA data using a genetic algorithm”, Phys. Rev. D, 81, 104016 (2010). [![]() ![]() ![]() |
![]() |
357 | Phinney, E.S. et al., The Big Bang Observer: direct detection of gravitational waves from the birth of the Universe to the present, (NASA, Washington, DC, 2003). |
![]() |
358 | Piran, T., “The role of viscosity and cooling mechanisms in the stability of accretion disks”,
Astrophys. J., 221, 652–660 (1978). [![]() ![]() |
![]() |
359 | Plowman, J.E., Hellings, R.W. and Tsuruta, S., “Constraining the black hole mass spectrum
with gravitational wave observations – II. Direct comparison of detailed models”, Mon. Not.
R. Astron. Soc., 415, 333–352 (2011). [![]() ![]() ![]() |
![]() |
360 | Plowman, J.E., Jacobs, D.C., Hellings, R.W., Larson, S.L. and Tsuruta, S., “Constraining the
black hole mass spectrum with gravitational wave observations - I. The error kernel”, Mon.
Not. R. Astron. Soc., 401, 2706–2714 (2010). [![]() ![]() ![]() |
![]() |
361 | Poisson, E., A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, (Cambridge
University Press, Cambridge; New York, 2004). [![]() ![]() |
![]() |
362 | Poisson, E., Pound, A. and Vega, I., “The Motion of Point Particles in Curved Spacetime”,
Living Rev. Relativity, 14, lrr-2011-7 (2011). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2011-7. |
![]() |
363 | Polchinski, J., String Theory. Vol. 2: Superstring Theory and Beyond, Cambridge Monographs
on Mathematical Physics, 2, (Cambridge University Press, Cambridge; New York, 1998).
[![]() |
![]() |
364 | Poon, M.Y. and Merritt, D., “Triaxial Black Hole Nuclei”, Astrophys. J. Lett., 568, L89–L92
(2002). [![]() ![]() ![]() |
![]() |
365 | Porter, E.K. and Cornish, N.J., “Effect of higher harmonic corrections on the detection of
massive black hole binaries with LISA”, Phys. Rev. D, 78, 064005 (2008). [![]() ![]() ![]() |
![]() |
366 | Pound, A., “Second-Order Gravitational Self-Force”, Phys. Rev. Lett., 109, 051101 (2012).
[![]() ![]() ![]() |
![]() |
367 | Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101
(2005). [![]() ![]() ![]() |
![]() |
368 | Pretorius, F., “Binary Black Hole Coalescence”, in Colpi, M., Casella, P., Gorini, V., Moschella,
U. and Possenti, A., eds., Physics of Relativistic Objects in Compact Binaries: From Birth to
Coalescence, Astrophysics and Space Science Library, 359, pp. 305–369, (Springer, Berlin; New
York, 2009). [![]() ![]() |
![]() |
369 | Prince, T.A., Tinto, M., Larson, S.L. and Armstrong, J.W., “LISA optimal sensitivity”, Phys.
Rev. D, 66, 122002 (2002). [![]() ![]() ![]() |
![]() |
370 | Prince, T.A. et al., LISA: Probing the Universe with Gravitational Waves, LISA-LIST-RP-436,
(National Research Council, Washington, DC, 2009). Online version (accessed 1 August 2013):
![]() |
![]() |
371 | Psaltis, D., “Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic
Spectrum”, Living Rev. Relativity, 11, lrr-2008-9 (2008). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2008-9. |
![]() |
372 | Psaltis, D., Perrodin, D., Dienes, K.R. and Mocioiu, I., “Kerr Black Holes Are Not Unique to
General Relativity”, Phys. Rev. Lett., 100, 091101 (2008). [![]() ![]() ![]() |
![]() |
373 | Randall, L. and Sundrum, R., “An Alternative to Compactification”, Phys. Rev. Lett., 83,
4690–4693 (1999). [![]() ![]() ![]() |
![]() |
374 | Rastall, P., “The Newtonian theory of gravitation and its generalization”, Can. J. Phys., 57,
944–973 (1979). [![]() ![]() |
![]() |
375 | Rauch, K.P. and Ingalls, B., “Resonant tidal disruption in galactic nuclei”, Mon. Not. R.
Astron. Soc., 299, 1231–1241 (1998). [![]() ![]() ![]() |
![]() |
376 | Rauch, K.P. and Tremaine, S., “Resonant relaxation in stellar systems”, New Astronomy, 1,
149–170 (1996). [![]() ![]() ![]() |
![]() |
377 | Rees, M.J., “Black Hole Models for Active Galactic Nuclei”, Annu. Rev. Astron. Astrophys.,
22, 471–506 (1984). [![]() ![]() |
![]() |
378 | Reynaud, S., Salomon, C. and Wolf, P., “Testing General Relativity with Atomic Clocks”,
Space Sci. Rev., 148, 233–247 (2009). [![]() ![]() ![]() |
![]() |
379 | Robinson, D.C., “Uniqueness of the Kerr black hole”, Phys. Rev. Lett., 34, 905–906 (1975).
[![]() ![]() |
![]() |
380 | Roedig, C. and Sesana, A., “Origin and Implications of high eccentricities in massive black
hole binaries at sub-pc scales”, J. Phys.: Conf. Ser., 363, 012035 (2012). [![]() ![]() ![]() |
![]() |
381 | Rosen, N., “Theory of Gravitation”, Phys. Rev. D, 3, 2317–2319 (1971). [![]() ![]() |
![]() |
382 | Rosen, N., “A bi-metric theory of gravitation”, Gen. Relativ. Gravit., 4, 435–447 (1973). [![]() ![]() |
![]() |
383 | Rosen, N., “A theory of gravitation”, Ann. Phys. (N.Y.), 84, 455–473 (1974). [![]() ![]() |
![]() |
384 | Rosen, N., “A bi-metric theory of gravitation. II.”, Gen. Relativ. Gravit., 6, 259–268 (1975).
[![]() ![]() |
![]() |
385 | Rubbo, L.J., Holley-Bockelmann, K. and Finn, L.S., “Event Rate for Extreme Mass Ratio Burst
Signals in the Laser Interferometer Space Antenna Band”, Astrophys. J. Lett., 649, L25–L28
(2006). [![]() ![]() |
![]() |
386 | Ruiter, A.J., Belczynski, K., Benacquista, M., Larson, S.L. and Williams, G., “The LISA
Gravitational Wave Foreground: A Study of Double White Dwarfs”, Astrophys. J., 717,
1006–1021 (2010). [![]() ![]() ![]() |
![]() |
387 | Ryan, F.D., “Gravitational waves from the inspiral of a compact object into a massive,
axisymmetric body with arbitrary multipole moments”, Phys. Rev. D, 52, 5707–5718 (1995).
[![]() ![]() |
![]() |
388 | Ryan, F.D., “Accuracy of estimating the multipole moments of a massive body from the
gravitational waves of a binary inspiral”, Phys. Rev. D, 56, 1845–1855 (1997). [![]() ![]() |
![]() |
389 | Ryan, F.D., “Spinning boson stars with large self-interaction”, Phys. Rev. D, 55, 6081–6091
(1997). [![]() ![]() |
![]() |
390 | Saito, R. and Yokoyama, J., “Gravitational-Wave Background as a Probe of the Primordial
Black-Hole Abundance”, Phys. Rev. Lett., 102, 161101 (2009). [![]() ![]() ![]() |
![]() |
391 | Sakimoto, P.J. and Coroniti, F.V., “Accretion disk models for QSOs and active galactic nuclei:
The role of magnetic viscosity”, Astrophys. J., 247, 19–31 (1981). [![]() ![]() |
![]() |
392 | Sanders, R.H., “A tensor-vector-scalar framework for modified dynamics and cosmic
dark matter”, Mon. Not. R. Astron. Soc., 363, 459–468 (2005). [![]() ![]() ![]() |
![]() |
393 | Santamaría, L. et al., “Matching post-Newtonian and numerical relativity waveforms:
Systematic errors and a new phenomenological model for nonprecessing black hole binaries”,
Phys. Rev. D, 82, 064016 (2010). [![]() ![]() ![]() |
![]() |
394 | Sasaki, M. and Tagoshi, H., “Analytic Black Hole Perturbation Approach to Gravitational
Radiation”, Living Rev. Relativity, 6, lrr-2003-6 (2003). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2003-6. |
![]() |
395 | Sathyaprakash, B.S. and Schutz, B.F., “Physics, Astrophysics and Cosmology with
Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2 (2009). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2009-2. |
![]() |
396 | Sawado, N., Shiiki, N., Maeda, K.-I. and Torii, T., “Regular and Black Hole Skyrmions with
Axisymmetry”, Gen. Relativ. Gravit., 36, 1361–1371 (2004). [![]() ![]() ![]() |
![]() |
397 | Scharre, P.D. and Will, C.M., “Testing scalar-tensor gravity using space gravitational-wave
interferometers”, Phys. Rev. D, 65, 042002 (2002). [![]() ![]() ![]() |
![]() |
398 | Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D. and Pfeiffer, H.P.,
“High-accuracy waveforms for binary black hole inspiral, merger, and ringdown”, Phys. Rev.
D, 79, 024003 (2009). [![]() ![]() ![]() |
![]() |
399 | Schlamminger, S., Choi, K.-Y., Wagner, T.A., Gundlach, J.H. and Adelberger, E.G., “Test of
the Equivalence Principle Using a Rotating Torsion Balance”, Phys. Rev. Lett., 100, 041101
(2008). [![]() ![]() ![]() |
![]() |
400 | Schutz, B.F., “From Classical Theory to Quantum Gravity”, Space Sci. Rev., 148, 15–23 (2009).
[![]() ![]() |
![]() |
401 | Schwarzschild, K., “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen
Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(VII), 189–196 (1916).
[![]() ![]() |
![]() |
402 | Seifert, M.D., “Stability of spherically symmetric solutions in modified theories of gravity”,
Phys. Rev. D, 76, 064002 (2007). [![]() ![]() ![]() |
![]() |
403 | Sepinsky, J.F., Willems, B., Kalogera, V. and Rasio, F.A., “Interacting Binaries with Eccentric
Orbits: Secular Orbital Evolution Due to Conservative Mass Transfer”, Astrophys. J., 667,
1170–1184 (2007). [![]() ![]() ![]() |
![]() |
404 | Sepinsky, J.F., Willems, B., Kalogera, V. and Rasio, F.A., “Interacting Binaries with Eccentric
Orbits. II. Secular Orbital Evolution due to Non-conservative Mass Transfer”, Astrophys. J.,
702, 1387–1392 (2009). [![]() ![]() ![]() |
![]() |
405 | Sesana, A., Gair, J.R., Berti, E. and Volonteri, M., “Reconstructing the massive black hole
cosmic history through gravitational waves”, Phys. Rev. D, 83, 044036 (2011). [![]() ![]() ![]() |
![]() |
406 | Sesana, A., Volonteri, M. and Haardt, F., “LISA detection of massive black hole binaries:
imprint of seed populations and extreme recoils”, Class. Quantum Grav., 26, 094033 (2009).
[![]() ![]() ![]() |
![]() |
407 | Seto, N. and Cooray, A., “LISA measurement of gravitational wave background anisotropy:
Hexadecapole moment via a correlation analysis”, Phys. Rev. D, 70, 123005 (2004). [![]() ![]() ![]() |
![]() |
408 | Seto, N., Kawamura, S. and Nakamura, T., “Possibility of Direct Measurement of the
Acceleration of the Universe Using 0.1 Hz Band Laser Interferometer Gravitational Wave
Antenna in Space”, Phys. Rev. Lett., 87, 221103 (2001). [![]() ![]() ![]() |
![]() |
409 | Shakura, N.I. and Sunyaev, R.A., “Black Holes in Binary Systems. Observational Appearance”,
Astron. Astrophys., 24, 337–355 (1973). [![]() |
![]() |
410 | Shakura, N.I. and Sunyaev, R.A., “A theory of the instability of disk accretion on to black
holes and the variability of binary X-ray sources, galactic nuclei and quasars”, Mon. Not. R.
Astron. Soc., 175, 613–632 (1976). [![]() |
![]() |
411 | Shapiro, S.L., “Numerical Relativity at the Frontier”, Prog. Theor. Phys. Suppl., 163, 100–119
(2006). [![]() ![]() ![]() |
![]() |
412 | Shibata, M., Nakao, K. and Nakamura, T., “Scalar-type gravitational wave emission from
gravitational collapse in Brans-Dicke theory: Detectability by a laser interferometer”, Phys.
Rev. D, 50, 7304–7317 (1994). [![]() ![]() |
![]() |
413 | Shiiki, N. and Sawado, N., “Regular and black hole solutions in the Einstein Skyrme theory
with negative cosmological constant”, Class. Quantum Grav., 22, 3561–3573 (2005). [![]() ![]() ![]() |
![]() |
414 | Sivia, D.S., Data Analysis: A Bayesian Tutorial, (Oxford University Press, Oxford; New York, 2006), 2nd edition. |
![]() |
415 | Soffel, M.H., Relativity in Astrometry, Celestial Mechanics and Geodesy, Astronomy and
Astrophysics Library, (Springer, Berlin; New York, 1989). [![]() ![]() |
![]() |
416 | Sopuerta, C.F. and Yunes, N., “Extreme- and intermediate-mass ratio inspirals in
dynamical Chern-Simons modified gravity”, Phys. Rev. D, 80, 064006 (2009). [![]() ![]() ![]() |
![]() |
417 | Sota, Y., Suzuki, S. and Maeda, K.-I., “Chaos in static axisymmetric spacetimes: I. Vacuum
case”, Class. Quantum Grav., 13, 1241–1260 (1996). [![]() ![]() ![]() |
![]() |
418 | Sotiriou, T.P., “The nearly Newtonian regime in non-linear theories of gravity”, Gen. Relativ.
Gravit., 38, 1407–1417 (2006). [![]() ![]() ![]() |
![]() |
419 | Sotiriou, T.P. and Faraoni, V., “f(R) theories of gravity”, Rev. Mod. Phys., 82, 451–497 (2010).
[![]() ![]() ![]() |
![]() |
420 | Sotiriou, T.P. and Faraoni, V., “Black Holes in Scalar-Tensor Gravity”, Phys. Rev. Lett., 108,
081103 (2012). [![]() ![]() ![]() |
![]() |
421 | Sperhake, U., Berti, E. and Cardoso, V., “Numerical simulations of black-hole binaries and
gravitational wave emission”, C. R. Physique, 14, 306–317 (2013). [![]() ![]() ![]() |
![]() |
422 | Stairs, I.H., “Testing General Relativity with Pulsar Timing”, Living Rev. Relativity, 6,
lrr-2003-5 (2003). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2003-5. |
![]() |
423 | Starobinsky, A., “A new type of isotropic cosmological models without singularity”, Phys. Lett.
B, 91, 99–102 (1980). [![]() ![]() |
![]() |
424 | Stavridis, A. and Will, C.M., “Bounding the mass of the graviton with gravitational waves:
Effect of spin precessions in massive black hole binaries”, Phys. Rev. D, 80, 044002 (2009).
[![]() ![]() ![]() |
![]() |
425 | Stavridis, A. and Will, C.M., “Effect of spin precession on bounding the mass of the graviton
using gravitational waves from massive black hole binaries”, J. Phys.: Conf. Ser., 228, 012049
(2010). [![]() ![]() |
![]() |
426 | Stein, L.C. and Yunes, N., “Effective gravitational wave stress-energy tensor in alternative
theories of gravity”, Phys. Rev. D, 83, 064038 (2011). [![]() ![]() ![]() |
![]() |
427 | Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. and Herlt, E., Exact Solutions
of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge
University Press, Cambridge; New York, 2003), 2nd edition. [![]() ![]() |
![]() |
428 | Straumann, N. and Zhou, Z.-H., “Instability of a colored black hole solution”, Phys. Lett. B,
243, 33–35 (1990). [![]() ![]() |
![]() |
429 | Stroeer, A., Gair, J.R. and Vecchio, A., “Automatic Bayesian inference for LISA data analysis
strategies”, in Merkovitz, S.M. and Livas, J.C., eds., Laser Interferometer Space Antenna: 6th
International LISA Symposium, 6th International LISA Symposium, Greenbelt, MD, USA,
19 – 23 June 2006, AIP Conference Proceedings, 873, pp. 444–451, (American Institute of
Physics, Melville, NY, 2006). [![]() ![]() ![]() |
![]() |
430 | Stroeer, A. and Vecchio, A., “The LISA verification binaries”, Class. Quantum Grav., 23,
S809–S818 (2006). [![]() ![]() ![]() |
![]() |
431 | Stroeer, A. et al., “Inference on white dwarf binary systems using the first round Mock
LISA Data Challenges data sets”, Class. Quantum Grav., 24, 541 (2007). [![]() ![]() ![]() |
![]() |
432 | Suen, W.-M., “Distorted black holes in terms of multipole moments”, Phys. Rev. D, 34,
3633–3637 (1986). [![]() ![]() |
![]() |
433 | Svrcek, P. and Witten, E., “Axions in string theory”, J. High Energy Phys., 2006(06), 051
(2006). [![]() ![]() ![]() |
![]() |
434 | Tabor, M., “The Kolmogorov–Arnold–Moser Theorem”, in Chaos and Integrability in Nonlinear Dynamics: An Introduction, pp. 105–112, (Wiley, New York; Chichester, 1989). |
![]() |
435 | Talmadge, C., Berthias, J.-P., Hellings, R.W. and Standish, E.M., “Model-independent
constraints on possible modifications of Newtonian gravity”, Phys. Rev. Lett., 61, 1159–1162
(1988). [![]() ![]() |
![]() |
436 | Tanaka, T., “Classical Black Hole Evaporation in Randall-Sundrum Infinite Braneworld”, Prog.
Theor. Phys. Suppl., 148, 307–316 (2002). [![]() ![]() ![]() |
![]() |
437 | Tanaka, T. and Haiman, Z., “The Assembly of Supermassive Black Holes at High Redshifts”,
Astrophys. J., 696, 1798–1822 (2009). [![]() ![]() ![]() |
![]() |
438 | Taracchini, A. et al., “Prototype effective-one-body model for nonprecessing spinning
inspiral-merger-ringdown waveforms”, Phys. Rev. D, 86, 024011 (2012). [![]() ![]() ![]() |
![]() |
439 | Timpano, S.E., Rubbo, L.J. and Cornish, N.J., “Characterizing the galactic gravitational wave
background with LISA”, Phys. Rev. D, 73, 122001 (2006). [![]() ![]() ![]() |
![]() |
440 | Tinto, M. and Alves, M.E.S., “LISA sensitivities to gravitational waves from relativistic metric
theories of gravity”, Phys. Rev. D, 82, 122003 (2010). [![]() ![]() ![]() |
![]() |
441 | Tremaine, S. et al., “The Slope of the Black Hole Mass versus Velocity Dispersion Correlation”,
Astrophys. J., 574, 740–753 (2002). [![]() ![]() ![]() |
![]() |
442 | Trias, M. and Sintes, A.M., “LISA observations of supermassive black holes: Parameter
estimation using full post-Newtonian inspiral waveforms”, Phys. Rev. D, 77, 024030 (2008).
[![]() ![]() ![]() |
![]() |
443 | Turyshev, S.G., “Experimental Tests of General Relativity”, Annu. Rev. Nucl. Part. Sci., 58,
207–248 (2008). [![]() ![]() ![]() |
![]() |
444 | Turyshev, S.G., “Experimental tests of general relativity: recent progress and future directions”,
Phys. Usp., 52, 1–27 (2009). [![]() ![]() ![]() |
![]() |
445 | Uzan, J.-P., “Varying Constants, Gravitation and Cosmology”, Living Rev. Relativity, 14,
lrr-2011-2 (2010). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2011-2. |
![]() |
446 | Vainshtein, A.I., “To the problem of nonvanishing gravitation mass”, Phys. Lett. B, 39, 393–394
(1972). [![]() ![]() |
![]() |
447 | Vallisneri, M., “Geometric time delay interferometry”, Phys. Rev. D, 72, 042003 (2005). [![]() ![]() ![]() |
![]() |
448 | Vallisneri, M., “Synthetic LISA: Simulating time delay interferometry in a model LISA”, Phys.
Rev. D, 71, 022001 (2005). [![]() ![]() ![]() |
![]() |
449 | Vallisneri, M., “Use and abuse of the Fisher information matrix in the assessment of
gravitational-wave parameter-estimation prospects”, Phys. Rev. D, 77, 042001 (2008). [![]() ![]() ![]() |
![]() |
450 | Vallisneri, M., “A LISA data-analysis primer”, Class. Quantum Grav., 26, 094024 (2009). [![]() ![]() ![]() |
![]() |
451 | Vallisneri, M., “Testing general relativity with gravitational waves: A reality check”, Phys. Rev.
D, 86, 082001 (2012). [![]() ![]() ![]() |
![]() |
452 | Vallisneri, M., Crowder, J. and Tinto, M., “Sensitivity and parameter-estimation precision
for alternate LISA configurat ions”, Class. Quantum Grav., 25, 065005 (2008). [![]() ![]() ![]() |
![]() |
453 | Vallisneri, M. and Yunes, N., “Stealth bias in gravitational-wave parameter estimation”, Phys.
Rev. D, 87, 102002 (2013). [![]() ![]() ![]() |
![]() |
454 | van Dam, H. and Veltman, M., “Massive and mass-less Yang-Mills and gravitational fields”,
Nucl. Phys. B, 22, 397–411 (1970). [![]() ![]() |
![]() |
455 | Vecchio, A., “LISA observations of rapidly spinning massive black hole binary systems”, Phys.
Rev. D, 70, 042001 (2004). [![]() ![]() ![]() |
![]() |
456 | Veitch, J. and Vecchio, A., “Assigning confidence to inspiral gravitational wave candidates
with Bayesian model selection”, Class. Quantum Grav., 25, 184010 (2008). [![]() ![]() ![]() |
![]() |
457 | Veitch, J. and Vecchio, A., “Bayesian approach to the follow-up of candidate gravitational wave
signals”, Phys. Rev. D, 78, 022001 (2008). [![]() ![]() ![]() |
![]() |
458 | Vigeland, S., Yunes, N. and Stein, L.C., “Bumpy black holes in alternative theories of gravity”,
Phys. Rev. D, 83, 104027 (2011). [![]() ![]() ![]() |
![]() |
459 | Vilenkin, A., “Classical and quantum cosmology of the Starobinsky inflationary model”, Phys.
Rev. D, 32, 2511–2521 (1985). [![]() |
![]() |
460 | Volonteri, M., Madau, P. and Haardt, F., “The Formation of Galaxy Stellar Cores by the
Hierarchical Merging of Supermassive Black Holes”, Astrophys. J., 593, 661–666 (2003). [![]() ![]() ![]() |
![]() |
461 | Wagoner, R.V., “Resonant-Mass Detection of Tensor and Scalar Waves”, in Marck, J.-A. and
Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les
Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995,
pp. 419–432, (Cambridge University Press, Cambridge, U.K., 1997). [![]() |
![]() |
462 | Wahlquist, H., “The Doppler response to gravitational waves from a binary star source”, Gen.
Relativ. Gravit., 19, 1101–1113 (1987). [![]() ![]() |
![]() |
463 | Walker, M. and Penrose, R., “On quadratic first integrals of the geodesic equations for type
{22} spacetimes”, Commun. Math. Phys., 18, 265–274 (1970). [![]() ![]() |
![]() |
464 | Wang, Y., Shang, Y. and Babak, S., “Extreme mass ratio inspiral data analysis with a
phenomenological waveform”, Phys. Rev. D, 86, 104050 (2012). [![]() ![]() ![]() |
![]() |
465 | Warburton, N., Akcay, S., Barack, L., Gair, J.R. and Sago, N., “Evolution of inspiral
orbits around a Schwarzschild black hole”, Phys. Rev. D, 85, 061501 (2012). [![]() ![]() ![]() |
![]() |
466 | Warburton, N. and Barack, L., “Self-force on a scalar charge in Kerr spacetime: Eccentric
equatorial orbits”, Phys. Rev. D, 83, 124038 (2011). [![]() ![]() ![]() |
![]() |
467 | Wen, L. and Gair, J.R., “Detecting extreme mass ratio inspirals with LISA using
time–frequency methods”, Class. Quantum Grav., 22, S445–S452 (2005). [![]() ![]() ![]() |
![]() |
468 | Wesley, D.H., Steinhardt, P.J. and Turok, N., “Controlling chaos through compactification in
cosmological models with a collapsing phase”, Phys. Rev. D, 72, 063513 (2005). [![]() ![]() ![]() |
![]() |
469 | Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press,
Cambridge; New York, 1993), 2nd edition. [![]() |
![]() |
470 | Will, C.M., “Bounding the mass of the graviton using gravitational-wave observations
of inspiralling compact binaries”, Phys. Rev. D, 57, 2061–2068 (1998). [![]() ![]() ![]() |
![]() |
471 | Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev.
Relativity, 9, lrr-2006-3 (2006). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2006-3. |
![]() |
472 | Will, C.M., “Carter-like Constants of the Motion in Newtonian Gravity and Electrodynamics”,
Phys. Rev. Lett., 102, 061101 (2009). [![]() ![]() ![]() |
![]() |
473 | Will, C.M. and Yunes, N., “Testing alternative theories of gravity using LISA”, Class. Quantum
Grav., 21, 4367–4381 (2004). [![]() ![]() ![]() |
![]() |
474 | Willems, B., Deloye, C.J. and Kalogera, V., “Energy Dissipation Through Quasi-static Tides
in White Dwarf Binaries”, Astrophys. J., 713, 239–256 (2010). [![]() ![]() ![]() |
![]() |
475 | Willems, B., Vecchio, A. and Kalogera, V., “Probing White Dwarf Interiors with LISA:
Periastron Precession in Eccentric Double White Dwarfs”, Phys. Rev. Lett., 100, 041102 (2008).
[![]() ![]() ![]() |
![]() |
476 | Williams, J.G., Turyshev, S.G. and Boggs, D.H., “Progress in Lunar Laser Ranging Tests of
Relativistic Gravity”, Phys. Rev. Lett., 93, 261101 (2004). [![]() ![]() ![]() |
![]() |
477 | Wiseman, A.G., “Coalescing binary systems of compact objects to (post)5∕2-Newtonian order.
II. Higher-order wave forms and radiation recoil”, Phys. Rev. D, 46, 1517–1539 (1992). [![]() ![]() |
![]() |
478 | Wiseman, A.G., “Coalescing binary systems of compact objects to (post)5∕2-Newtonian order.
IV. The gravitational wave tail”, Phys. Rev. D, 48, 4757–4770 (1993). [![]() ![]() |
![]() |
479 | Witek, H., Cardoso, V., Ishibashi, A. and Sperhake, U., “Superradiant instabilities in
astrophysical systems”, Phys. Rev. D, 87, 043513 (2013). [![]() ![]() ![]() |
![]() |
480 | Yagi, K., “Gravitational wave observations of galactic intermediate-mass black hole binaries
with DECIGO path finder”, Class. Quantum Grav., 29, 075005 (2012). [![]() ![]() ![]() |
![]() |
481 | Yagi, K., “New constraint on scalar Gauss-Bonnet gravity and a possible explanation for the
excess of the orbital decay rate in a low-mass x-ray binary”, Phys. Rev. D, 86, 081504 (2012).
[![]() ![]() ![]() |
![]() |
482 | Yagi, K., “Scientific Potential of DECIGO Pathfinder and Testing GR with Space-Borne
Gravitational Wave Interferometers”, Int. J. Mod. Phys. D, 22, 1341013 (2013). [![]() ![]() ![]() |
![]() |
483 | Yagi, K., Stein, L.C., Yunes, N. and Tanaka, T., “Post-Newtonian, quasicircular binary inspirals
in quadratic modified gravity”, Phys. Rev. D, 85, 064022 (2012). [![]() ![]() ![]() |
![]() |
484 | Yagi, K., Tanahashi, N. and Tanaka, T., “Probing the size of extra dimensions with
gravitational wave astronomy”, Phys. Rev. D, 83, 084036 (2011). [![]() ![]() ![]() |
![]() |
485 | Yagi, K. and Tanaka, T., “Constraining alternative theories of gravity by gravitational waves
from precessing eccentric compact binaries with LISA”, Phys. Rev. D, 81, 064008 (2010). [![]() ![]() ![]() |
![]() |
486 | Yagi, K. and Tanaka, T., “DECIGO/BBO as a Probe to Constrain Alternative Theories of
Gravity”, Prog. Theor. Phys., 123, 1069–1078 (2010). [![]() ![]() ![]() |
![]() |
487 | Yagi, K., Yunes, N. and Tanaka, T., “Gravitational Waves from Quasicircular Black-Hole
Binaries in Dynamical Chern-Simons Gravity”, Phys. Rev. Lett., 109, 251105 (2012). [![]() ![]() ![]() |
![]() |
488 | Yagi, K., Yunes, N. and Tanaka, T., “Slowly rotating black holes in dynamical Chern-Simons
gravity: Deformation quadratic in the spin”, Phys. Rev. D, 86, 044037 (2012). [![]() ![]() ![]() |
![]() |
489 | Yoshino, H. and Kodama, H., “Bosenova Collapse of Axion Cloud around a Rotating Black
Hole”, Prog. Theor. Phys., 128, 153–190 (2012). [![]() ![]() ![]() |
![]() |
490 | Yu, Q. and Tremaine, S., “Observational constraints on growth of massive black holes”, Mon.
Not. R. Astron. Soc., 335, 965–976 (2002). [![]() ![]() ![]() |
![]() |
491 | Yunes, N. and Finn, L.S., “Constraining effective quantum gravity with LISA”, J. Phys.: Conf.
Ser., 154, 012041 (2009). [![]() ![]() ![]() |
![]() |
492 | Yunes, N. and Hughes, S.A., “Binary pulsar constraints on the parametrized post-Einsteinian
framework”, Phys. Rev. D, 82, 082002 (2010). [![]() ![]() ![]() |
![]() |
493 | Yunes, N., Kocsis, B., Loeb, A. and Haiman, Z., “Imprint of Accretion Disk-Induced Migration
on Gravitational Waves from Extreme Mass Ratio Inspirals”, Phys. Rev. Lett., 107, 171103
(2011). [![]() ![]() ![]() |
![]() |
494 | Yunes, N., Miller, M.C. and Thornburg, J., “Effect of massive perturbers on extreme
mass-ratio inspiral waveforms”, Phys. Rev. D, 83, 044030 (2011). [![]() ![]() ![]() |
![]() |
495 | Yunes, N., Pani, P. and Cardoso, V., “Gravitational waves from quasicircular extreme
mass-ratio inspirals as probes of scalar-tensor theories”, Phys. Rev. D, 85, 102003 (2012). [![]() ![]() ![]() |
![]() |
496 | Yunes, N. and Pretorius, F., “Dynamical Chern-Simons modified gravity: Spinning black
holes in the slow-rotation approximation”, Phys. Rev. D, 79, 084043 (2009). [![]() ![]() ![]() |
![]() |
497 | Yunes, N. and Pretorius, F., “Fundamental theoretical bias in gravitational wave astrophysics
and the parametrized post-Einsteinian framework”, Phys. Rev. D, 80, 122003 (2009). [![]() ![]() ![]() |
![]() |
498 | Yunes, N., Pretorius, F. and Spergel, D., “Constraining the evolutionary history of Newton’s
constant with gravitational wave observations”, Phys. Rev. D, 81, 064018 (2010). [![]() ![]() ![]() |
![]() |
499 | Yunes, N., Psaltis, D., Özel, F. and Loeb, A., “Constraining parity violation in gravity with
measurements of neutron-star moments of inertia”, Phys. Rev. D, 81, 064020 (2010). [![]() ![]() ![]() |
![]() |
500 | Yunes, N. and Siemens, X., “Gravitational Wave Tests of General Relativity with Ground-Based
Detectors and Pulsar Timing Arrays”, Living Rev. Relativity, submitted, (2013). [![]() ![]() |
![]() |
501 | Yunes, N. and Sopuerta, C.F., “Perturbations of Schwarzschild black holes in Chern-Simons
modified gravity”, Phys. Rev. D, 77, 064007 (2008). [![]() ![]() ![]() |
![]() |
502 | Yunes, N., Sopuerta, C.F., Rubbo, L.J. and Holley-Bockelmann, K., “Relativistic Effects in
Extreme Mass Ratio Gravitational Wave Bursts”, Astrophys. J., 675, 604–613 (2008). [![]() ![]() ![]() |
![]() |
503 | Yunes, N. and Spergel, D.N., “Double-binary-pulsar test of Chern-Simons modified gravity”,
Phys. Rev. D, 80, 042004 (2009). [![]() ![]() ![]() |
![]() |
504 | Yunes, N. and Stein, L.C., “Nonspinning black holes in alternative theories of gravity”, Phys.
Rev. D, 83, 104002 (2011). [![]() ![]() ![]() |
![]() |
505 | Zakharov, V.I., “Linearized Gravitation Theory and the Graviton Mass”, JETP Lett., 12, 312
(1970). [![]() |