sidebar

References

1 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors”, Class. Quantum Grav., 27, 173001 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1003.2480 [astro-ph.HE]].
2 Acernese, F. et al. (Virgo Collaboration), Advanced Virgo Baseline Design, VIR-027A-09, (Virgo, Cascina, 2009). Online version (accessed 26 July 2013):
External Linkhttp://tds.ego-gw.it/ql/?c=6589.
3 Adelberger, E.G., Heckel, B.R. and Nelson, A.E., “Tests of the Gravitational Inverse-Square Law”, Annu. Rev. Nucl. Part. Sci., 53, 77–121 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-ph/0307284].
4 Ajith, P. et al., “Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries”, Phys. Rev. D, 77, 104017 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0710.2335 [gr-qc]].
5 Ajith, P. et al., “Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Nonprecessing Spins”, Phys. Rev. Lett., 106, 241101 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.2867 [gr-qc]].
6 Alexander, S., Finn, L.S. and Yunes, N., “Gravitational-wave probe of effective quantum gravity”, Phys. Rev. D, 78, 066005 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.2542 [gr-qc]].
7 Alexander, S.H.S. and Gates Jr, S.J., “Can the string scale be related to the cosmic baryon asymmetry?”, J. Cosmol. Astropart. Phys., 2006(06), 018 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0409014].
8 Alexander, S. and Yunes, N., “New Post-Newtonian Parameter to Test Chern-Simons Gravity”, Phys. Rev. Lett., 99, 241101 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0703265].
9 Alexander, S. and Yunes, N., “Parametrized post-Newtonian expansion of Chern-Simons gravity”, Phys. Rev. D, 75, 124022 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.0299 [hep-th]].
10 Alexander, S. and Yunes, N., “Chern-Simons modified gravity as a torsion theory and its interaction with fermions”, Phys. Rev. D, 77, 124040 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0804.1797 [gr-qc]].
11 Alexander, S. and Yunes, N., “Chern-Simons modified general relativity”, Phys. Rep., 480, 1–55 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.2562 [hep-th]].
12 Ali-Haïmoud, Y., “Revisiting the double-binary-pulsar probe of nondynamical Chern-Simons gravity”, Phys. Rev. D, 83, 124050 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.0009 [astro-ph.HE]].
13 Ali-Haïmoud, Y. and Chen, Y., “Slowly rotating stars and black holes in dynamical Chern-Simons gravity”, Phys. Rev. D, 84, 124033 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.5329 [astro-ph.HE]].
14 Alvarez-Gaumé, L. and Witten, E., “Gravitational anomalies”, Nucl. Phys. B, 234, 269–330 (1984). [External LinkDOI], [External LinkADS].
15 Alves, M.E.S. and Tinto, M., “Pulsar timing sensitivities to gravitational waves from relativistic metric theories of gravity”, Phys. Rev. D, 83, 123529 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.4824 [gr-qc]].
16 Amaro-Seoane, P., “Stellar dynamics and extreme-mass ratio inspirals”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1205.5240 [astro-ph.CO]].
17 Amaro-Seoane, P., Brem, P., Cuadra, J. and Armitage, P.J., “The Butterfly Effect in the Extreme-mass Ratio Inspiral Problem”, Astrophys. J. Lett., 744, L20 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.5174 [astro-ph.CO]].
18 Amaro-Seoane, P., Gair, J.R., Freitag, M., Miller, M.C., Mandel, I., Cutler, C. and Babak, S., “Intermediate and extreme mass-ratio inspirals – astrophysics, science applications and detection using LISA”, Class. Quantum Grav., 24, R113–R169 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0703495].
19 Amaro-Seoane, P. and Preto, M., “The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth”, Class. Quantum Grav., 28, 094017 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.5781 [astro-ph.CO]].
20 Amaro-Seoane, P. et al., “Low-frequency gravitational-wave science with eLISA/NGO”, Class. Quantum Grav., 29, 124016 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.0839 [gr-qc]].
21 Amaro-Seoane, P. et al., “eLISA: Astrophysics and cosmology in the millihertz regime”, GW Notes, 6, 4–110 (2013). [External LinkADS], [External LinkarXiv:1201.3621 [astro-ph.CO]].
22 Amelino-Camelia, G., “The three perspectives on the quantum-gravity problem and their implications for the fate of Lorentz symmetry”, arXiv, e-print, (2003). [External LinkADS], [External LinkarXiv:gr-qc/0309054].
23 Ando, M. et al. (DECIGO Collaboration), “DECIGO pathfinder”, Class. Quantum Grav., 26, 094019 (2009). [External LinkDOI], [External LinkADS].
24 Apostolatos, T.A., Lukes-Gerakopoulos, G. and Contopoulos, G., “How to Observe a Non-Kerr Spacetime Using Gravitational Waves”, Phys. Rev. Lett., 103, 111101 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.0093 [gr-qc]].
25 Armano, M. et al., “LISA Pathfinder: the experiment and the route to LISA”, Class. Quantum Grav., 26, 094001 (2009). [External LinkDOI], [External LinkADS].
26 Arun, K.G., “Generic bounds on dipolar gravitational radiation from inspiralling compact binaries”, Class. Quantum Grav., 29, 075011 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.5911 [gr-qc]].
27 Arun, K.G., Iyer, B.R., Qusailah, M.S.S. and Sathyaprakash, B.S., “Probing the nonlinear structure of general relativity with black hole binaries”, Phys. Rev. D, 74, 024006 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0604067].
28 Arun, K.G., Iyer, B.R., Qusailah, M.S.S. and Sathyaprakash, B.S., “Testing post-Newtonian theory with gravitational wave observations”, Class. Quantum Grav., 23, L37–L43 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0604018].
29 Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., Sinha, S. and Van Den Broeck, C., “Higher signal harmonics, LISA’s angular resolution, and dark energy”, Phys. Rev. D, 76, 104016 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.3920].
30 Arun, K.G., Iyer, B.R, Sathyaprakash, B.S. and Sundararajan, P.A., “Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case”, Phys. Rev. D, 71, 084008 (2005). [External LinkDOI].
31 Arun, K.G. and Pai, A., “Tests of General Relativity and Alternative Theories of Gravity Using Gravitational Wave Observations”, Int. J. Mod. Phys. D, 22, 1341012 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.2198 [gr-qc]].
32 Arun, K.G. and Will, C.M., “Bounding the mass of the graviton with gravitational waves: effect of higher harmonics in gravitational waveform templates”, Class. Quantum Grav., 26, 155002 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.1190 [gr-qc]].
33 Arun, K.G. et al., “Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce”, Class. Quantum Grav., 26, 094027 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.1011 [gr-qc]].
34 Arvanitaki, A. and Dubovsky, S., “Exploring the string axiverse with precision black hole physics”, Phys. Rev. D, 83, 044026 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.3558 [hep-th]].
35 Babak, S., Gair, J.R. and Porter, E.K., “An algorithm for the detection of extreme mass ratio inspirals in LISA data”, Class. Quantum Grav., 26, 135004 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.4133 [gr-qc]].
36 Babak, S. and Grishchuk, L.P., “Finite-Range Gravity and its Role in Gravitational Waves, Black Holes and Cosmology”, Int. J. Mod. Phys. D, 12, 1905–1959 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0209006].
37 Babak, S. et al. (Challenge-1B participants), “The Mock LISA Data Challenges: from Challenge 1B to Challenge 3”, Class. Quantum Grav., 25, 184026 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.2110 [gr-qc]].
38 Babak, S. et al., LISA Data Analysis Status, LISA-MSO-TN-1001-2-1, (LISA Mission Science Office, Greenbelt, MD, 2009). Online version (accessed 26 July 2013):
External Linkhttp://lisa.gsfc.nasa.gov/documentation.html.
39 Babak, S. et al. (Challenge 3 participants), “The Mock LISA Data Challenges: from challenge 3 to challenge 4”, Class. Quantum Grav., 27, 084009 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.0548 [gr-qc]].
40 Babichev, E. and Deffayet, C., “An introduction to the Vainshtein mechanism”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1304.7240 [gr-qc]].
41 Babichev, E., Deffayet, C. and Ziour, R., “Recovery of general relativity in massive gravity via the Vainshtein mechanism”, Phys. Rev. D, 82, 104008 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1007.4506 [gr-qc]].
42 Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J.R., “Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96, 111102 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0511103].
43 Baker, J.G. and Thorpe, J.I., “Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors”, Phys. Rev. Lett., 108, 211101 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.5656 [gr-qc]].
44 Balmelli, S. and Jetzer, P., “Effective-one-body Hamiltonian with next-to-leading order spin-spin coupling for two nonprecessing black holes with aligned spins”, Phys. Rev. D, 87, 124036 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1305.5674 [gr-qc]].
45 Barack, L., “Gravitational self-force in extreme mass-ratio inspirals”, Class. Quantum Grav., 26, 213001 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0908.1664 [gr-qc]].
46 Barack, L. and Cutler, C., “LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy”, Phys. Rev. D, 69, 082005 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0310125].
47 Barack, L. and Cutler, C., “Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes”, Phys. Rev. D, 75, 042003 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612029].
48 Barack, L. and Sago, N., “Gravitational self-force on a particle in circular orbit around a Schwarzschild black hole”, Phys. Rev. D, 75, 064021 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0701069].
49 Barack, L. and Sago, N., “Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole”, Phys. Rev. D, 81, 084021 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1002.2386 [gr-qc]].
50 Barausse, E., “Relativistic dynamical friction in a collisional fluid”, Mon. Not. R. Astron. Soc., 382, 826–834 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0709.0211].
51 Barausse, E. and Buonanno, A., “Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings”, Phys. Rev. D, 84, 104027 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.2904 [gr-qc]].
52 Barausse, E. and Rezzolla, L., “Influence of the hydrodynamic drag from an accretion torus on extreme mass-ratio inspirals”, Phys. Rev. D, 77, 104027 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.4558].
53 Barausse, E., Rezzolla, L., Petroff, D. and Ansorg, M., “Gravitational waves from extreme mass ratio inspirals in nonpure Kerr spacetimes”, Phys. Rev. D, 75, 064026 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612123].
54 Barausse, E. and Sotiriou, T.P., “Perturbed Kerr Black Holes Can Probe Deviations from General Relativity”, Phys. Rev. Lett., 101, 099001 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.3433].
55 Barausse, E., Sotiriou, T.P. and Miller, J.C., “Curvature singularities, tidal forces and the viability of Palatini f(R) gravity”, Class. Quantum Grav., 25, 105008 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.1141 [gr-qc]].
56 Barausse, E., Sotiriou, T.P. and Miller, J.C., “A no-go theorem for polytropic spheres in Palatini f(R) gravity”, Class. Quantum Grav., 25, 062001 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0703132].
57 Barbero G, J.F. and Villaseñor, E.J., “Lorentz violations and Euclidean signature metrics”, Phys. Rev. D, 68, 087501 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0307066].
58 Bauch, A. and Weyers, S., “New experimental limit on the validity of local position invariance”, Phys. Rev. D, 65, 081101(R) (2002). [External LinkDOI], [External LinkADS].
59 Bebronne, M.V., Theoretical and Phenomenological Aspects of Theories with Massive Gravitons, Ph.D. thesis, (Université Libre de Bruxelles, Brussels, Belgium, 2009). [External LinkADS], [External LinkarXiv:0910.4066 [gr-qc]].
60 Begelman, M.C., Volonteri, M. and Rees, M.J., “Formation of supermassive black holes by direct collapse in pre-galactic haloes”, Mon. Not. R. Astron. Soc., 370, 289–298 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0602363].
61 Bekenstein, J.D., “Relativistic gravitation theory for the modified Newtonian dynamics paradigm”, Phys. Rev. D, 70, 083509 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0403694].
62 Belinfante, F.J. and Swihart, J.C., “Phenomenological linear theory of gravitation: Part I. Classical mechanics”, Ann. Phys. (N.Y.), 1, 168–195 (1957). [External LinkDOI], [External LinkADS].
63 Bender, P.L. and Hils, D., “Confusion noise level due to galactic and extragalactic binaries”, Class. Quantum Grav., 14, 1439–1444 (1997). [External LinkDOI], [External LinkADS].
64 Bender, P.L. et al. (LISA Study Team), LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. An international project in the field of Fundamental Physics in Space. Pre-Phase A report, MPQ-233, (Max-Planck-Institut für Quantenoptik, Garching, 1998). Online version (accessed 26 July 2013):
External Linkhttp://list.caltech.edu/mission_documents.
65 Benenti, S. and Francaviglia, M., “Remarks on certain separability structures and their applications to general relativity”, Gen. Relativ. Gravit., 10, 79–92 (1979). [External LinkDOI], [External LinkADS].
66 Berry, C.P.L. and Gair, J.R., “Linearized f(R) gravity: Gravitational radiation and Solar System tests”, Phys. Rev. D, 83, 104022 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.0819 [gr-qc]].
67 Berry, C.P.L. and Gair, J.R., “Extreme-mass-ratio-bursts from extragalactic sources”, Mon. Not. R. Astron. Soc., 433, 3572–3583 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1306.0774 [astro-ph.HE]].
68 Berry, C.P.L. and Gair, J.R., “Observing the Galaxy’s massive black hole with gravitational wave bursts”, Mon. Not. R. Astron. Soc., 429, 589–612 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1210.2778 [astro-ph.HE]].
69 Berti, E., “Astrophysical Black Holes as Natural Laboratories for Fundamental Physics and Strong-Field Gravity”, Braz. J. Phys. (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.5702 [gr-qc]].
70 Berti, E., Buonanno, A. and Will, C.M., “Estimating spinning binary parameters and testing alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0411129].
71 Berti, E., Buonanno, A. and Will, C.M., “Testing general relativity and probing the merger history of massive black holes with LISA”, Class. Quantum Grav., 22, S943–S954 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0504017].
72 Berti, E., Cardoso, J., Cardoso, V. and Cavaglià, M., “Matched filtering and parameter estimation of ringdown waveforms”, Phys. Rev. D, 76, 104044 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.1202 [gr-qc]].
73 Berti, E. and Cardoso, V., “Supermassive Black Holes or Boson Stars? Hair Counting with Gravitational Wave Detectors”, Int. J. Mod. Phys. D, 15, 2209–2216 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0605101].
74 Berti, E., Cardoso, V., Gonzalez, J.A., Sperhake, U., Hannam, M., Husa, S. and Brügmann, B., “Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis”, Phys. Rev. D, 76, 064034 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0703053].
75 Berti, E., Cardoso, V., Gualtieri, L., Horbatsch, M. and Sperhake, U., “Numerical simulations of single and binary black holes in scalar-tensor theories: Circumventing the no-hair theorem”, Phys. Rev. D, 87, 124020 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.2836 [gr-qc]].
76 Berti, E., Cardoso, V. and Starinets, A.O., “Quasinormal modes of black holes and black branes”, Class. Quantum Grav., 26, 163001 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0905.2975 [gr-qc]].
77 Berti, E., Cardoso, V. and Will, C.M., “Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA”, Phys. Rev. D, 73, 064030 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0512160].
78 Berti, E., Gair, J.R. and Sesana, A., “Graviton mass bounds from space-based gravitational-wave observations of massive black hole populations”, Phys. Rev. D, 84, 101501 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.3528 [gr-qc]].
79 Berti, E., Gualtieri, L., Horbatsch, M. and Alsing, J., “Light scalar field constraints from gravitational-wave observations of compact binaries”, Phys. Rev. D, 85, 122005 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.4340 [gr-qc]].
80 Berti, E. and Volonteri, M., “Cosmological Black Hole Spin Evolution by Mergers and Accretion”, Astrophys. J., 684, 822–828 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0802.0025].
81 Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376 (2003). [External LinkDOI], [External LinkADS].
82 Binétruy, P., Bohé, A., Caprini, C. and Dufaux, J.-F., “Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources”, J. Cosmol. Astropart. Phys., 2012(06), 027 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.0983 [gr-qc]].
83 Bisnovatyi-Kogan, G.S. and Blinnikov, S.I., “Disk accretion onto a black hole at subcritical luminosity”, Astron. Astrophys., 59, 111–125 (1977). [External LinkADS].
84 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4 (2006). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2006-4.
85 Blanchet, L., Damour, T., Esposito-Farèse, G. and Iyer, B.R., “Gravitational Radiation from Inspiralling Compact Binaries Completed at the Third Post-Newtonian Order”, Phys. Rev. Lett., 93, 091101 (2004). [External LinkDOI].
86 Blanchet, L., Damour, T., Iyer, B.R., Will, C.M. and Wiseman, A.G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515–3518 (1995). [External LinkDOI].
87 Blanchet, L., Faye, G., Iyer, B.R. and Joguet, B., “Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501(R) (2002). [External LinkDOI].
88 Blanchet, L. and Sathyaprakash, B.S., “Detecting a Tail Effect in Gravitational-Wave Experiments”, Phys. Rev. Lett., 74, 1067–1070 (1995). [External LinkDOI], [External LinkADS].
89 Błaut, A., “Angular and frequency response of the gravitational wave interferometers in the metric theories of gravity”, Phys. Rev. D, 85, 043005 (2012). [External LinkDOI], [External LinkADS].
90 Błaut, A., Babak, S. and Królak, A., “Mock LISA data challenge for the Galactic white dwarf binaries”, Phys. Rev. D, 81, 063008 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0911.3020 [gr-qc]].
91 Bondi, H., “On spherically symmetrical accretion”, Mon. Not. R. Astron. Soc., 112, 195–204 (1952). [External LinkADS].
92 Bondi, H. and Hoyle, F., “On the mechanism of accretion by stars”, Mon. Not. R. Astron. Soc., 104, 273–282 (1944). [External LinkADS].
93 Brink, J., “Spacetime encodings. I. A spacetime reconstruction problem”, Phys. Rev. D, 78, 102001 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.1178].
94 Brink, J., “Spacetime encodings. II. Pictures of integrability”, Phys. Rev. D, 78, 102002 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.1179].
95 Brown, D.A., Brink, J., Fang, H., Gair, J.R., Li, C., Lovelace, G., Mandel, I. and Thorne, K.S., “Prospects for Detection of Gravitational Waves from Intermediate-Mass-Ratio Inspirals”, Phys. Rev. Lett., 99, 201102 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612060].
96 Brown, D.A., Crowder, J., Cutler, C., Mandel, I. and Vallisneri, M., “A three-stage search for supermassive black-hole binaries in LISA data”, Class. Quantum Grav., 24, 595 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.2447 [gr-qc]].
97 Brownstein, J.R. and Moffat, J.W., “Galaxy Rotation Curves without Nonbaryonic Dark Matter”, Astrophys. J., 636, 721–741 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0506370].
98 Brownstein, J.R. and Moffat, J.W., “The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter”, Mon. Not. R. Astron. Soc., 382, 29–47 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0702146].
99 Buonanno, A. and Damour, T., “Effective one-body approach to general relativistic two-body dynamics”, Phys. Rev. D, 59, 084006 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9811091].
100 Buonanno, A. and Damour, T., “Transition from inspiral to plunge in binary black hole coalescences”, Phys. Rev. D, 62, 064015 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0001013].
101 Buonanno, A., Pan, Y., Pfeiffer, H.P., Scheel, M.A., Buchman, L.T. and Kidder, L.E., “Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonspinning, equal-mass black holes”, Phys. Rev. D, 79, 124028 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.0790 [gr-qc]].
102 Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y., “Accurate Evolutions of Orbiting Black-Hole Binaries without Excision”, Phys. Rev. Lett., 96, 111101 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0511048].
103 Canizares, P., Gair, J.R. and Sopuerta, C.F., “Testing Chern-Simons modified gravity with gravitational-wave detections of extreme-mass-ratio binaries”, Phys. Rev. D, 86, 044010 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.1253 [gr-qc]].
104 Canizares, P., Gair, J.R. and Sopuerta, C.F., “Testing Chern-Simons modified gravity with observations of extreme-mass-ratio binaries”, J. Phys.: Conf. Ser., 363, 012019 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1206.0322 [gr-qc]].
105 Cannella, U., Effective Field Theory Methods in Gravitational Physics and Tests of Gravity, Ph.D. thesis, (University of Geneva, Geneva, Switzerland, 2011). [External LinkADS], [External LinkarXiv:1103.0983 [gr-qc]].
106 Cannella, U., Foffa, S., Maggiore, M., Sanctuary, H. and Sturani, R., “Extracting the three- and four-graviton vertices from binary pulsars and coalescing binaries”, Phys. Rev. D, 80, 124035 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.2186 [gr-qc]].
107 Capozziello, S., Carloni, S. and Troisi, A., “Quintessence without scalar fields”, in Pandalai, S.G., ed., Recent Research Developments in Astronomy and Astrophysics, Vol. 1, p. 625, (Research Signpost, Trivandrum, India, 2003). [External LinkADS], [External LinkarXiv:astro-ph/0303041].
108 Capozziello, S. and Francaviglia, M., “Extended theories of gravity and their cosmological and astrophysical applications”, Gen. Relativ. Gravit., 40, 357–420 (2008). [External LinkDOI].
109 Capozziello, S., Stabile, A. and Troisi, A., “a General Solution in the Newtonian Limit of f(R)-GRAVITY”, Mod. Phys. Lett. A, 24, 659–665 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0901.0448 [gr-qc]].
110 Cardoso, V., Chakrabarti, S., Pani, P., Berti, E. and Gualtieri, L., “Floating and Sinking: The Imprint of Massive Scalars around Rotating Black Holes”, Phys. Rev. Lett., 107, 241101 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1109.6021 [gr-qc]].
111 Cardoso, V. and Gualtieri, L., “Perturbations of Schwarzschild black holes in dynamical Chern-Simons modified gravity”, Phys. Rev. D, 80, 064008 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.5008 [gr-qc]].
112 Carroll, S.M., Duvvuri, V., Trodden, M. and Turner, M.S., “Is cosmic speed-up due to new gravitational physics?”, Phys. Rev. D, 70, 043528 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0306438].
113 Carter, B., “Global Structure of the Kerr Family of Gravitational Fields”, Phys. Rev., 174, 1559–1571 (1968). [External LinkDOI], [External LinkADS].
114 Carter, B., “Axisymmetric black hole has only two degrees of freedom”, Phys. Rev. Lett., 26, 331–333 (1971). [External LinkDOI], [External LinkADS].
115 Celotti, A., Miller, J.C. and Sciama, D.W., “Astrophysical evidence for the existence of black holes”, Class. Quantum Grav., 16, A3–A21 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9912186].
116 Cembranos, J.A.R., “Dark Matter from R2 Gravity”, Phys. Rev. Lett., 102, 141301 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.1653 [hep-ph]].
117 Centrella, J., Baker, J.G., Kelly, B.J. and van Meter, J.R., “Black-hole binaries, gravitational waves, and numerical relativity”, Rev. Mod. Phys., 82, 3069–3119 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.5260 [gr-qc]].
118 Chamberlin, S.J. and Siemens, X., “Stochastic backgrounds in alternative theories of gravity: Overlap reduction functions for pulsar timing arrays”, Phys. Rev. D, 85, 082001 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5661 [astro-ph.HE]].
119 Chandrasekhar, S., The Mathematical Theory of Black Holes, International Series of Monographs on Physics, 69, (Oxford University Press, Oxford; New York, 1992).
120 Chatziioannou, K., Yunes, N. and Cornish, N., “Model-independent test of general relativity: An extended post-Einsteinian framework with complete polarization content”, Phys. Rev. D, 86, 022004 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.2585 [gr-qc]].
121 Chiba, T., “1∕R gravity and scalar-tensor gravity”, Phys. Lett. B, 575, 1–3 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0307338].
122 Ciufolini, I. and Pavlis, E.C., “A confirmation of the general relativistic prediction of the Lense-Thirring effect”, Nature, 431, 958–960 (2004). [External LinkDOI], [External LinkADS].
123 Clowe, D., Bradač, M., Gonzalez, A.H., Markevitch, M., Randall, S.W., Jones, C. and Zaritsky, D., “A Direct Empirical Proof of the Existence of Dark Matter”, Astrophys. J. Lett., 648, L109–L113 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0608407].
124 Collins, H., Gravity’s Shadow: The Search for Gravitational Waves, (University of Chicago Press, Chicago; London, 2004). [External LinkGoogle Books].
125 Collins, N.A. and Hughes, S.A., “Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits”, Phys. Rev. D, 69, 124022 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0402063].
126 Comelli, D., “Born-Infeld-type gravity”, Phys. Rev. D, 72, 064018 (2005). [External LinkDOI], [External LinkADS].
127 Cooray, A., “Gravitational-wave background of neutron star-white dwarf binaries”, Mon. Not. R. Astron. Soc., 354, 25–30 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0406467].
128 Cooray, A. and Seto, N., “Graviton mass from close white dwarf binaries detectable with LISA”, Phys. Rev. D, 69, 103502 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0311054].
129 Cooray, A. and Seto, N., “Can the Laser Interferometer Space Antenna Resolve the Distance to the Large Magellanic Cloud?”, Astrophys. J. Lett., 623, L113–L116 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0502500].
130 Cornish, N.J., “Detection strategies for extreme mass ratio inspirals”, Class. Quantum Grav., 28, 094016 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:0804.3323 [gr-qc]].
131 Cornish, N.J. and Larson, S.L., “LISA data analysis: Source identification and subtraction”, Phys. Rev. D, 67, 103001 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0301548].
132 Cornish, N.J. and Porter, E.K., “The search for massive black hole binaries with LISA”, Class. Quantum Grav., 24, 5729–5755 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612091].
133 Cornish, N.J. and Rubbo, L.J., “LISA response function”, Phys. Rev. D, 67, 022001 (2003). [External LinkDOI], [External LinkADS].
134 Cornish, N.J., Sampson, L., Yunes, N. and Pretorius, F., “Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework”, Phys. Rev. D, 84, 062003 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.2088 [gr-qc]].
135 Crowder, J. and Cornish, N.J., “Beyond LISA: Exploring future gravitational wave missions”, Phys. Rev. D, 72, 083005 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0506015].
136 Crowder, J. and Cornish, N.J., “Solution to the galactic foreground problem for LISA”, Phys. Rev. D, 75, 043008 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0611546].
137 Cutler, C., “Angular resolution of the LISA gravitational wave detector”, Phys. Rev. D, 57, 7089–7102 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9703068].
138 Cutler, C. and Harms, J., “Big Bang Observer and the neutron-star-binary subtraction problem”, Phys. Rev. D, 73, 042001 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0511092].
139 Cutler, C., Hiscock, W.A. and Larson, S.L., “LISA, binary stars, and the mass of the graviton”, Phys. Rev. D, 67, 024015 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0209101].
140 Cutler, C. and Lindblom, L., “Gravitational helioseismology?”, Phys. Rev. D, 54, 1287–1290 (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9601047].
141 Damour, T., “Coalescence of two spinning black holes: An effective one-body approach”, Phys. Rev. D, 64, 124013 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0103018].
142 Damour, T. and Esposito-Farèse, G., “Nonperturbative strong-field effects in tensor-scalar theories of gravitation”, Phys. Rev. Lett., 70, 2220–2223 (1993). [External LinkDOI], [External LinkADS].
143 Damour, T. and Esposito-Farèse, G., “Gravitational-wave versus binary-pulsar tests of strong-field gravity”, Phys. Rev. D, 58, 042001 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9803031].
144 Damour, T., Nagar, A. and Bernuzzi, S., “Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion”, Phys. Rev. D, 87, 084035 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1212.4357 [gr-qc]].
145 Davies, M.B. and King, A., “The Stars of the Galactic Center”, Astrophys. J. Lett., 624, L25–L27 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0503441].
146 de Felice, A. and Tsujikawa, S., “f(R) Theories”, Living Rev. Relativity, 13, lrr-2010-3 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1002.4928 [gr-qc]]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2010-3.
147 de Freitas Pacheco, J.A., Filloux, C. and Regimbau, T., “Capture rates of compact objects by supermassive black holes”, Phys. Rev. D, 74, 023001 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0606427].
148 Del Pozzo, W., Veitch, J. and Vecchio, A., “Testing general relativity using Bayesian model selection: Applications to observations of gravitational waves from compact binary systems”, Phys. Rev. D, 83, 082002 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1101.1391 [gr-qc]].
149 Dhurandhar, S.V. and Tinto, M., “Time-Delay Interferometry”, Living Rev. Relativity, 8, lrr-2005-4 (2005). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2005-4.
150 Di Stefano, R., Greiner, J., Murray, S. and Garcia, M., “A New Way to Detect Massive Black Holes in Galaxies: The Stellar Remnants of Tidal Disruption”, Astrophys. J. Lett., 551, L37–L40 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0112434].
151 Diener, P., Vega, I., Wardell, B. and Detweiler, S., “Self-Consistent Orbital Evolution of a Particle around a Schwarzschild Black Hole”, Phys. Rev. Lett., 108, 191102 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1112.4821 [gr-qc]].
152 Doeleman, S.S. et al., “Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87”, Science, 338, 355–358 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1210.6132 [astro-ph.HE]].
153 Dolgov, A.D. and Kawasaki, M., “Can modified gravity explain accelerated cosmic expansion?”, Phys. Lett. B, 573, 1–4 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0307285].
154 Drasco, S. and Hughes, S.A., “Gravitational wave snapshots of generic extreme mass ratio inspirals”, Phys. Rev. D, 73, 024027 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0509101].
155 Dreyer, O., Kelly, B.J., Krishnan, B., Finn, L.S., Garrison, D. and Lopez-Aleman, R., “Black-hole spectroscopy: testing general relativity through gravitational-wave observations”, Class. Quantum Grav., 21, 787–803 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0309007].
156 Droz, S., Heusler, M. and Straumann, N., “New black hole solutions with hair”, Phys. Lett. B, 268, 371–376 (1991). [External LinkDOI], [External LinkADS].
157 Dubeibe, F.L., Pachón, L.A. and Sanabria-Gómez, J.D., “Chaotic dynamics around astrophysical objects with nonisotropic stresses”, Phys. Rev. D, 75, 023008 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0701065].
158 Dyda, S., Flanagan, É.É. and Kamionkowski, M., “Vacuum instability in Chern-Simons gravity”, Phys. Rev. D, 86, 124031 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.4871 [gr-qc]].
159 Eardley, D.M., Lee, D.L. and Lightman, A.P., “Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity”, Phys. Rev. D, 8, 3308–3321 (1973). [External LinkDOI], [External LinkADS].
160 Eardley, D.M., Lee, D.L., Lightman, A.P., Wagoner, R.V. and Will, C.M., “Gravitational-wave observations as a tool for testing relativistic gravity”, Phys. Rev. Lett., 30, 884–886 (1973). [External LinkDOI], [External LinkADS].
161 Edlund, J.A., Tinto, M., Królak, A. and Nelemans, G., “Simulation of the white dwarf white dwarf galactic background in the LISA data”, Class. Quantum Grav., 22, 913 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0504026].
162 Edlund, J.A., Tinto, M., Królak, A. and Nelemans, G., “White-dwarf white-dwarf galactic background in the LISA data”, Phys. Rev. D, 71, 122003 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0504112].
163 Eling, C., Jacobson, T. and Mattingly, D., “Einstein-Æther Theory”, in Liu, J.T., Duff, M.J., Stelle, K.S. and Woodard, R.P., eds., Deserfest: A Celebration of the Life and Works of Stanley Deser, University of Michigan, Ann Arbor, USA, 3 – 5 April 2004, pp. 163–179, (World Scientific, Singapore; River Edge, NJ, 2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0410001 [gr-qc]].
164 Emparan, R., Fabbri, A. and Kaloper, N., “Quantum Black Holes as Holograms in AdS Braneworlds”, J. High Energy Phys., 2002(08), 043 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0206155].
165 Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational Field Problem”, Phys. Rev., 167, 1175–1177 (1968). [External LinkDOI], [External LinkADS].
166 Estabrook, F. and Wahlquist, H., “Response of Doppler spacecraft tracking to gravitational radiation”, Gen. Relativ. Gravit., 6, 439–447 (1975). [External LinkDOI], [External LinkADS].
167 “European Gravitational Observatory”, project homepage, EGO. URL (accessed 26 July 2013):
External Linkhttp://www.ego-gw.it.
168 Evans, J.D., Hall, L.M.H. and Caillol, P., “Standard cosmological evolution in a wide range of f(R) models”, Phys. Rev. D, 77, 083514 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.3695].
169 Everitt, C.W.F. et al., “Gravity Probe B: Final Results of a Space Experiment to Test General Relativity”, Phys. Rev. Lett., 106, 221101 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.3456 [gr-qc]].
170 Fang, H. and Lovelace, G., “Tidal coupling of a Schwarzschild black hole and circularly orbiting moon”, Phys. Rev. D, 72, 124016 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0505156].
171 Farmer, A.J. and Phinney, E.S., “The gravitational wave background from cosmological compact binaries”, Mon. Not. R. Astron. Soc., 346, 1197–1214 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0304393].
172 Feroz, F., Gair, J.R., Hobson, M.P. and Porter, E.K., “Use of the MULTINEST algorithm for gravitational wave data analysis”, Class. Quantum Grav., 26, 215003 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.1544 [gr-qc]].
173 Ferrarese, L. and Ford, H., “Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research”, Space Sci. Rev., 116, 523–624 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0411247].
174 Ferrarese, L. and Merritt, D., “A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies”, Astrophys. J. Lett., 539, L9–L12 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0006053].
175 Fierz, M., “Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin”, Helv. Phys. Acta, 12, 3–37 (1939). [External LinkDOI].
176 Fierz, M. and Pauli, W., “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. R. Soc. London, Ser. A, 173, 211–232 (1939). [External LinkDOI], [External LinkADS].
177 Finn, L.S., “Gravitational waves from solar oscillations: Proposal for a transition-zone test of general relativity”, Class. Quantum Grav., 2, 381–402 (1985). [External LinkDOI], [External LinkADS].
178 Finn, L.S. and Sutton, P.J., “Bounding the mass of the graviton using binary pulsar observations”, Phys. Rev. D, 65, 044022 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0109049].
179 Finn, L.S. and Thorne, K.S., “Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA”, Phys. Rev. D, 62, 124021 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0007074].
180 Flanagan, É.É., “Higher-order gravity theories and scalar tensor theories”, Class. Quantum Grav., 21, 417–426 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0309015].
181 Flanagan, É.É. and Hinderer, T., “Transient Resonances in the Inspirals of Point Particles into Black Holes”, Phys. Rev. Lett., 109, 071102 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.4923 [gr-qc]].
182 Flanagan, É.É. and Hughes, S.A., “Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown”, Phys. Rev. D, 57, 4535–4565 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9701039].
183 Fodor, G., Hoenselaers, C. and Perjés, Z., “Multipole moments of axisymmetric systems in relativity”, J. Math. Phys., 30, 2252–2257 (1989). [External LinkDOI], [External LinkADS].
184 Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”, Living Rev. Relativity, 11, lrr-2008-7 (2008). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2008-7.
185 Foster, B.Z., “Metric redefinitions in Einstein-Æther theory”, Phys. Rev. D, 72, 044017 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0502066].
186 Freire, P.C.C. et al., “The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity”, Mon. Not. R. Astron. Soc., 423, 3328–3343 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.1450 [astro-ph.GA]].
187 Freitag, M., “Gravitational Waves from Stars Orbiting the Sagittarius A* Black Hole”, Astrophys. J. Lett., 583, L21–L24 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0211209].
188 Freitag, M., Amaro-Seoane, P. and Kalogera, V., “Stellar Remnants in Galactic Nuclei: Mass Segregation”, Astrophys. J., 649, 91–117 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0603280].
189 Furtado, C., Nascimento, J.R., Petrov, A.Y. and Santos, A.F., “Dynamical Chern-Simons modified gravity and Friedmann-Robertson-Walker metric”, arXiv, e-print, (2010). [External LinkADS], [External LinkarXiv:1005.1911 [hep-th]].
190 Futamase, T. and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact Binaries”, Living Rev. Relativity, 10, lrr-2007-2 (2007). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2007-2.
191 Gair, J.R., “The black hole symphony: probing new physics using gravitational waves”, Philos. Trans. R. Soc. London, Ser. A, 366, 4365–4379 (2008). [External LinkDOI], [External LinkADS].
192 Gair, J.R., “Probing black holes at low redshift using LISA EMRI observations”, Class. Quantum Grav., 26, 094034 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.0188 [gr-qc]].
193 Gair, J.R., Barack, L., Creighton, T., Cutler, C., Larson, S.L., Phinney, E.S. and Vallisneri, M., “Event rate estimates for LISA extreme mass ratio capture sources”, Class. Quantum Grav., 21, S1595–S1606 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0405137].
194 Gair, J.R. and Jones, G., “Detecting extreme mass ratio inspiral events in LISA data using the hierarchical algorithm for clusters and ridges (HACR)”, Class. Quantum Grav., 24, 1145–1168 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0610046].
195 Gair, J.R., Li, C. and Mandel, I., “Observable properties of orbits in exact bumpy spacetimes”, Phys. Rev. D, 77, 024035 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0708.0628].
196 Gair, J.R. and Porter, E.K., “Cosmic swarms: a search for supermassive black holes in the LISA data stream with a hybrid evolutionary algorithm”, Class. Quantum Grav., 26, 225004 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.3733 [gr-qc]].
197 Gair, J.R and Porter, E.K, “Observing extreme-mass-ratio inspirals with eLISA/NGO”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1210.8066 [gr-qc]].
198 Gair, J.R., Sesana, A., Berti, E. and Volonteri, M., “Constraining properties of the black hole population using LISA”, Class. Quantum Grav., 28, 094018 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.6172 [gr-qc]].
199 Gair, J.R., Tang, C. and Volonteri, M., “LISA extreme-mass-ratio inspiral events as probes of the black hole mass function”, Phys. Rev. D, 81, 104014 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.1921 [astro-ph.GA]].
200 Gair, J.R. and Wen, L., “Detecting extreme mass ratio inspirals with LISA using time–frequency methods: II. Search characterization”, Class. Quantum Grav., 22, S1359–S1371 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0506116].
201 Gair, J.R. and Yunes, N., “Approximate waveforms for extreme-mass-ratio inspirals in modified gravity spacetimes”, Phys. Rev. D, 84, 064016 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.6313 [gr-qc]].
202 Gasperini, M., “Singularity prevention and broken Lorentz symmetry”, Class. Quantum Grav., 4, 485–494 (1987). [External LinkDOI], [External LinkADS].
203 “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for Gravitational Physics (Albert Einstein Institute). URL (accessed 26 July 2013):
External Linkhttp://www.geo600.org/.
204 Geroch, R., “Multipole Moments. II. Curved Space”, J. Math. Phys., 11, 2580–2588 (1970). [External LinkDOI], [External LinkADS].
205 Ghez, A.M. et al., “Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits”, Astrophys. J., 689, 1044–1062 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0808.2870].
206 Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F. and Ott, T., “Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center”, Astrophys. J., 692, 1075–1109 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0810.4674].
207 Glampedakis, K. and Babak, S., “Mapping spacetimes with LISA: inspiral of a test body in a ’quasi-Kerr’ field”, Class. Quantum Grav., 23, 4167–4188 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0510057].
208 Goldberger, W.D. and Rothstein, I.Z., “Towers of gravitational theories”, Gen. Relativ. Gravit., 38, 1537–1546 (2006). [External LinkDOI], [External LinkADS].
209 Goldhaber, A.S. and Nieto, M.M., “Photon and graviton mass limits”, Rev. Mod. Phys., 82, 939–979 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.1003 [hep-ph]].
210 Gossan, S., Veitch, J. and Sathyaprakash, B.S., “Bayesian model selection for testing the no-hair theorem with black hole ringdowns”, Phys. Rev. D, 85, 124056 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5819 [gr-qc]].
211 Gregory, P.C., Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with ‘Mathematica’ Support, (Cambridge University Press, Cambridge; New York, 2005). [External LinkADS].
212 Grumiller, D. and Yunes, N., “How do black holes spin in Chern-Simons modified gravity?”, Phys. Rev. D, 77, 044015 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.1868 [gr-qc]].
213 Guéron, E. and Letelier, P.S., “Chaos in pseudo-Newtonian black holes with halos”, Astron. Astrophys., 368, 716–720 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0101140].
214 Guéron, E. and Letelier, P.S., “Geodesic chaos around quadrupolar deformed centers of attraction”, Phys. Rev. E, 66, 046611 (2002). [External LinkDOI], [External LinkADS].
215 GW Community Science Team, Core Team, and GW Science Task Force, Gravitational-Wave Mission Concept Study Final Report, (NASA, Washington, DC; Greenbelt, MD, 2012). Online version (accessed 26 July 2013):
External Linkhttp://pcos.gsfc.nasa.gov/studies/gravitational-wave-mission.php.
216 Haehnelt, M.G. and Kauffmann, G., “The correlation between black hole mass and bulge velocity dispersion in hierarchical galaxy formation models”, Mon. Not. R. Astron. Soc., 318, L35–L38 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0007369].
217 Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46–52 (1974). [External LinkDOI], [External LinkADS].
218 Harko, T., Kovács, Z. and Lobo, F.S.N., “Thin accretion disk signatures in dynamical Chern-Simons-modified gravity”, Class. Quantum Grav., 27, 105010 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.1267 [gr-qc]].
219 Harry, G.M., “Advanced LIGO: the next generation of gravitational wave detectors”, Class. Quantum Grav., 27, 084006 (2010). [External LinkDOI], [External LinkADS].
220 Hartle, J.B., “Slowly Rotating Relativistic Stars. I. Equations of Structure”, Astrophys. J., 150, 1005–1029 (1967). [External LinkDOI], [External LinkADS].
221 Hartle, J.B. and Thorne, K.S., “Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars”, Astrophys. J., 153, 807–834 (1968). [External LinkDOI], [External LinkADS].
222 Haugan, M.P. and Lämmerzahl, C., “Principles of Equivalence: Their Role in Gravitation Physics and Experiments That Test Them”, in Lämmerzahl, C., Everitt, C.W.F. and Hehl, F.W., eds., Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, Proceedings of a meeting held at Bad Honnef, Germany, 21 – 7 August 1999, Lecture Notes in Physics, 562, pp. 195–212, (Springer, Berlin; New York, 2001). [External LinkADS], [External LinkarXiv:gr-qc/0103067].
223 Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkADS], [External LinkGoogle Books].
224 Hawking, S.W. and Penrose, R., “The Singularities of Gravitational Collapse and Cosmology”, Proc. R. Soc. London, Ser. A, 314, 529–548 (1970). [External LinkDOI], [External LinkADS].
225 Hayama, K. and Nishizawa, A., “Model-independent test of gravity with a network of ground-based gravitational-wave detectors”, Phys. Rev. D, 87, 062003 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.4596 [gr-qc]].
226 Healy, J., Bode, T., Haas, R., Pazos, E., Laguna, P., Shoemaker, D.M. and Yunes, N., “Late Inspiral and Merger of Binary Black Holes in Scalar-Tensor Theories of Gravity”, arXiv, e-print, (2011). [External LinkADS], [External LinkarXiv:1112.3928 [gr-qc]].
227 Hellings, R.W., “Testing relativistic theories of gravity with spacecraft-Doppler gravity-wave detection”, Phys. Rev. D, 17, 3158–3163 (1978). [External LinkDOI], [External LinkADS].
228 Hellings, R.W. and Downs, G.S., “Upper limits on the isotropic gravitational radiation background from pulsar timing analysis”, Astrophys. J. Lett., 265, L39–L42 (1983). [External LinkDOI], [External LinkADS].
229 Hellings, R., Larson, S.L., Jensen, S., Fish, C., Benacquista, M., Cornish, N.J. and Lang, R.N., A Low-Cost, High-Performance Space Gravitational Astronomy Mission, (NASA/Goddard Space Flight Center, Greenbelt, MD, 2011). Online version (accessed 26 July 2013):
External Linkhttp://pcos.gsfc.nasa.gov/studies/gravwave/gravitational-wave-mission-rfis.php.
230 Hermes, J.J. et al., “Rapid Orbital Decay in the 12.75-minute Binary White Dwarf J0651+2844”, Astrophys. J. Lett., 757, L21 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.5051 [astro-ph.SR]].
231 Hils, D. and Bender, P.L., “Gravitational Radiation from Helium Cataclysmics”, Astrophys. J., 537, 334–341 (2000). [External LinkDOI], [External LinkADS].
232 Hobbs, G. et al., “The International Pulsar Timing Array project: using pulsars as a gravitational wave detector”, Class. Quantum Grav., 27, 084013 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0911.5206 [astro-ph.SR]].
233 Holley-Bockelmann, K., Mihos, J.C., Sigurdsson, S., Hernquist, L. and Norman, C., “The Evolution of Cuspy Triaxial Galaxies Harboring Central Black Holes”, Astrophys. J., 567, 817–827 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0111029].
234 Holz, D.E. and Hughes, S.A., “Using Gravitational-Wave Standard Sirens”, Astrophys. J., 629, 15–22 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0504616].
235 Hopman, C., “Extreme mass ratio inspiral rates: dependence on the massive black hole mass”, Class. Quantum Grav., 26, 094028 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0901.1667 [astro-ph.GA]].
236 Hopman, C., Freitag, M. and Larson, S.L., “Gravitational wave bursts from the Galactic massive black hole”, Mon. Not. R. Astron. Soc., 378, 129–136 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0612337].
237 Horbatsch, M.W. and Burgess, C.P., “Cosmic black-hole hair growth and quasar OJ287”, J. Cosmol. Astropart. Phys., 2012(05), 010 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.4009 [gr-qc]].
238 Huerta, E.A. and Gair, J.R., “Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals”, Phys. Rev. D, 79, 084021 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.4208 [gr-qc]].
239 Huerta, E.A. and Gair, J.R., “Intermediate-mass-ratio inspirals in the Einstein Telescope. I. Signal-to-noise ratio calculations”, Phys. Rev. D, 83, 044020 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.1985 [gr-qc]].
240 Huerta, E.A. and Gair, J.R., “Intermediate-mass-ratio inspirals in the Einstein Telescope. II. Parameter estimation errors”, Phys. Rev. D, 83, 044021 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1011.0421 [gr-qc]].
241 Hughes, S.A., “Untangling the merger history of massive black holes with LISA”, Mon. Not. R. Astron. Soc., 331, 805–816 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0108483].
242 Hughes, S.A. and Blandford, R.D., “Black Hole Mass and Spin Coevolution by Mergers”, Astrophys. J. Lett., 585, L101–L104 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0208484].
243 Hughes, S.A. and Menou, K., “Golden Binary Gravitational-Wave Sources: Robust Probes of Strong-Field Gravity”, Astrophys. J., 623, 689–699 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0410148].
244 Huwyler, C., Klein, A. and Jetzer, P., “Testing general relativity with LISA including spin precession and higher harmonics in the waveform”, Phys. Rev. D, 86, 084028 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.1826 [gr-qc]].
245 Iben Jr, I. and Tutukov, A.V., “The evolution of low-mass close binaries influenced by the radiation of gravitational waves and by a magnetic stellar wind”, Astrophys. J., 284, 719–744 (1984). [External LinkDOI], [External LinkADS].
246 Iben Jr, I. and Tutukov, A.V., “On the number-mass distribution of degenerate dwarfs produced by interacting binaries and evidence for mergers of low-mass helium dwarfs”, Astrophys. J., 311, 753–761 (1986). [External LinkDOI], [External LinkADS].
247 Islam, R.R., Taylor, J.E. and Silk, J., “Massive black hole remnants of the first stars in galactic haloes”, Mon. Not. R. Astron. Soc., 340, 647–656 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0208189].
248 Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev., 164, 1776–1779 (1967). [External LinkDOI], [External LinkADS].
249 Jackiw, R. and Pi, S.-Y., “Chern-Simons modification of general relativity”, Phys. Rev. D, 68, 104012 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0308071].
250 Jacobson, T., “Einstein-æther gravity: a status report”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, PoS(QG-Ph)020, (SISSA, Trieste, 2008). [External LinkADS], [External LinkarXiv:0801.1547 [gr-qc]]. URL (accessed 1 August 2013):
External Linkhttp://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=43.
251 Jaranowski, P. and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case”, Living Rev. Relativity, 15, lrr-2012-4 (2012). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2012-4.
252 Jennrich, O., “LISA technology and instrumentation”, Class. Quantum Grav., 26, 153001 (2009). [External LinkDOI], [External LinkarXiv:0906.2901].
253 Jones, D.I., “Bounding the Mass of the Graviton Using Eccentric Binaries”, Astrophys. J. Lett., 618, L115–L118 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0411123].
254 “KAGRA: Large-scale Cryogenic Gravitational Wave Telescope Project”, project homepage, Institute for Cosmic Ray Research (ICRR). URL (accessed 26 July 2013):
External Linkhttp://gwcenter.icrr.u-tokyo.ac.jp/en.
255 Kamaretsos, I., Hannam, M., Husa, S. and Sathyaprakash, B.S., “Black-hole hair loss: Learning about binary progenitors from ringdown signals”, Phys. Rev. D, 85, 024018 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.0854 [gr-qc]].
256 Kawamura, S. et al. (DECIGO Collaboration), “The Japanese space gravitational wave antenna – DECIGO”, Class. Quantum Grav., 23, S125–S131 (2006). [External LinkDOI], [External LinkADS].
257 Kawamura, S. et al. (DECIGO Collaboration), “The Japanese space gravitational wave antenna: DECIGO”, Class. Quantum Grav., 28, 094011 (2011). [External LinkDOI], [External LinkADS].
258 Kennefick, D., Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves, (Princeton University Press, Princeton; Woodstock, UK, 2007). [External LinkGoogle Books].
259 Keppel, D. and Ajith, P., “Constraining the mass of the graviton using coalescing black-hole binaries”, Phys. Rev. D, 82, 122001 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.0284 [gr-qc]].
260 Kerr, R.P., “Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics”, Phys. Rev. Lett., 11, 237–238 (1963). [External LinkDOI], [External LinkADS].
261 Kesden, M., Gair, J.R. and Kamionkowski, M., “Gravitational-wave signature of an inspiral into a supermassive horizonless object”, Phys. Rev. D, 71, 044015 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0411478].
262 Khoury, J. and Weltman, A., “Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space”, Phys. Rev. Lett., 93, 171104 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0309300].
263 Kidder, L.E., Will, C.M. and Wiseman, A.G., “Coalescing binary systems of compact objects to (post)52-Newtonian order. III. Transition from inspiral to plunge”, Phys. Rev. D, 47, 3281–3291 (1993). [External LinkDOI], [External LinkADS].
264 Kim, H. and Kim, W.-T., “Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium”, Astrophys. J., 665, 432–444 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0705.0084].
265 Kleihaus, B., Kunz, J., Sood, A. and Wirschins, M., “Sequences of globally regular and black hole solutions in SU(4) Einstein-Yang-Mills theory”, Phys. Rev. D, 58, 084006 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/9802143].
266 Klein, A., Jetzer, P. and Sereno, M., “Parameter estimation for coalescing massive binary black holes with LISA using the full 2-post-Newtonian gravitational waveform and spin-orbit precession”, Phys. Rev. D, 80, 064027 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.3318 [astro-ph.CO]].
267 Kocsis, B., Haiman, Z. and Menou, K., “Premerger Localization of Gravitational Wave Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart”, Astrophys. J., 684, 870–887 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.1144].
268 Kocsis, B., Yunes, N. and Loeb, A., “Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks”, Phys. Rev. D, 84, 024032 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.2322 [astro-ph.GA]].
269 Kodama, H. and Yoshino, H., “Axiverse and Black Hole”, Int. J. Mod. Phys.: Conf. Ser., 7, 84–115 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.1365 [hep-th]].
270 Kokkotas, K. and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9909058]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-1999-2.
271 Komatsu, E. et al. (WMAP Collaboration), “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation”, Astrophys. J. Suppl. Ser., 192, 18 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1001.4538 [astro-ph.CO]].
272 Konno, K., Matsuyama, T. and Tanda, S., “Rotating Black Hole in Extended Chern-Simons Modified Gravity”, Prog. Theor. Phys., 122, 561–568 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.4767 [gr-qc]].
273 Krolik, J.H., Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment, Princeton Series in Astrophysics, (Princeton University Press, Princeton, NJ, 1999). [External LinkGoogle Books].
274 Kuroyanagi, S., Nakayama, K. and Saito, S., “Prospects for determination of thermal history after inflation with future gravitational wave detectors”, Phys. Rev. D, 84, 123513 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.4169 [astro-ph.CO]].
275 Laguna, P., “Probing space-time through numerical simulations”, in Ashtekar, A., ed., 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, pp. 152–174, (World Scientific, Singapore; Hackensack, NJ, 2005). [External LinkADS], [External LinkGoogle Books].
276 Lamoreaux, S.K., Jacobs, J.P., Heckel, B.R., Raab, F.J. and Fortson, E.N., “New limits on spatial anisotropy from optically-pumped 201Hg and 199Hg”, Phys. Rev. Lett., 57, 3125–3128 (1986). [External LinkDOI], [External LinkADS].
277 Larson, S.L., “Online Sensitivity Curve Generator”, project homepage, Caltech. URL (accessed 26 July 2013):
External Linkhttp://www.srl.caltech.edu/~shane/sensitivity/.
278 Larson, S.L. and Finn, L.S., “The resolving power of LISA: comparing techniques for binary analysis”, in Merkowitz, S.M. and Livas, J.C., eds., Laser Interferometer Space Antenna: 6th International LISA Symposium, Proceedings of the 6th International LISA Symposium, Greenbelt, MD, USA, 19 – 23 June 2006, AIP Conference Series, 873, pp. 415–421, (American Institute of Physics, Melville, NY, 2006). [External LinkDOI], [External LinkADS].
279 Larson, S.L. and Hiscock, W.A., “Using binary stars to bound the mass of the graviton”, Phys. Rev. D, 61, 104008 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9912102].
280 Lee, K.J., Jenet, F.A. and Price, R.H., “Pulsar Timing as a Probe of Non-Einsteinian Polarizations of Gravitational Waves”, Astrophys. J., 685, 1304–1319 (2008). [External LinkDOI], [External LinkADS].
281 Lee, K., Jenet, F.A., Price, R.H., Wex, N. and Kramer, M., “Detecting Massive Gravitons Using Pulsar Timing Arrays”, Astrophys. J., 722, 1589–1597 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1008.2561 [astro-ph.HE]].
282 Letelier, P.S. and Vieira, W.M., “Chaos in black holes surrounded by gravitational waves”, Class. Quantum Grav., 14, 1249–1257 (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9706025].
283 Li, C. and Lovelace, G., “A generalization of Ryan’s theorem: probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals”, Phys. Rev. D, 77, 064022 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0702146].
284 Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence”, Phys. Rev. D, 85, 082003 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.0530 [gr-qc]].
285 Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations”, J. Phys.: Conf. Ser., 363, 012028 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5274 [gr-qc]].
286 Lightman, A.P. and Eardley, D.M., “Black Holes in Binary Systems: Instability of Disk Accretion”, Astrophys. J. Lett., 187, L1 (1974). [External LinkDOI], [External LinkADS].
287 Lightman, A.P. and Lee, D.L., “New Two-Metric Theory of Gravity with Prior Geometry”, Phys. Rev. D, 8, 3293–3302 (1973). [External LinkDOI], [External LinkADS].
288 “LIGO - Laser Interferometer Gravitational Wave Observatory”, project homepage, California Institute of Technology. URL (accessed 26 July 2013):
External Linkhttp://www.ligo.caltech.edu.
289 Lincoln, C.W. and Will, C.M., “Coalescing binary systems of compact objects to (post)52-Newtonian order: Late-time evolution and gravitational-radiation emission”, Phys. Rev. D, 42, 1123–1143 (1990). [External LinkDOI], [External LinkADS].
290 Littenberg, T.B., “Detection pipeline for Galactic binaries in LISA data”, Phys. Rev. D, 84, 063009 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.6355 [gr-qc]].
291 Littenberg, T.B. and Cornish, N.J., “Bayesian approach to the detection problem in gravitational wave astronomy”, Phys. Rev. D, 80, 063007 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.0368 [gr-qc]].
292 Lobo, J.A., “Spherical GW detectors and geometry”, in Coccia, E., Veneziano, G. and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1 – 4 July, 1997, Edoardo Amaldi Foundation Series, pp. 168–179, (World Scientific, Singapore, 1998). [External LinkADS].
293 Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.0762]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2008-8.
294 Lukes-Gerakopoulos, G., Apostolatos, T.A. and Contopoulos, G., “Observable signature of a background deviating from the Kerr metric”, Phys. Rev. D, 81, 124005 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1003.3120 [gr-qc]].
295 Luna, M. and Sintes, A.M., “Parameter estimation of compact binaries using the inspiral and ringdown waveforms”, Class. Quantum Grav., 23, 3763–3782 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0601072].
296 Lynden-Bell, D. and Rees, M.J., “On quasars, dust and the galactic centre”, Mon. Not. R. Astron. Soc., 152, 461 (1971). [External LinkADS].
297 Macedo, C.F.B., Pani, P., Cardoso, V. and Crispino, L.C.B., “Into the lair: gravitational-wave signatures of dark matter”, Astrophys. J., 774, 48 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.2646 [gr-qc]].
298 Madau, P. and Rees, M.J., “Massive Black Holes as Population III Remnants”, Astrophys. J. Lett., 551, L27–L30 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0101223].
299 Maggiore, M., Gravitational Waves. Vol. 1: Theory and Experiments, (Oxford University Press, Oxford; New York, 2008).
300 Maggiore, M. and Nicolis, A., “Detection strategies for scalar gravitational waves with interferometers and resonant spheres”, Phys. Rev. D, 62, 024004 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9907055].
301 Magueijo, J. and Mozaffari, A., “Case for testing modified Newtonian dynamics using LISA pathfinder”, Phys. Rev. D, 85, 043527 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.1075 [astro-ph.CO]].
302 Mandel, I., Brown, D.A., Gair, J.R. and Miller, M.C., “Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO”, Astrophys. J., 681, 1431–1447 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0705.0285].
303 Manko, V.S. and Novikov, I.D., “Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments”, Class. Quantum Grav., 9, 2477–2487 (1992). [External LinkDOI], [External LinkADS].
304 McKenzie, K. et al., LAGRANGE: A Space-Based Gravitational-Wave Detector with Geometric Suppression of Spacecraft Noise, (NASA/Goddard Space Flight Center, Greenbelt, MD, 2011). Online version (accessed 26 July 2013):
External Linkhttp://pcos.gsfc.nasa.gov/studies/gravwave/gravitational-wave-mission-rfis.php.
305 McNamara, P., Vitale, S. and Danzmann, K. (LISA Pathfinder Science Working Team), “LISA Pathfinder”, Class. Quantum Grav., 25, 114034 (2008). [External LinkDOI], [External LinkADS].
306 McWilliams, S.T., “Constraining the Braneworld with Gravitational Wave Observations”, Phys. Rev. Lett., 104, 141601 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.4744 [gr-qc]].
307 McWilliams, S.T., Lang, R.N., Baker, J.G. and Thorpe, J.I., “Sky localization of complete inspiral-merger-ringdown signals for nonspinning massive black hole binaries”, Phys. Rev. D, 84, 064003 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.5650 [gr-qc]].
308 Menou, K., Haiman, Z. and Narayanan, V.K., “The Merger History of Supermassive Black Holes in Galaxies”, Astrophys. J., 558, 535–542 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0101196].
309 Merkowitz, S.M., “Tests of Gravity Using Lunar Laser Ranging”, Living Rev. Relativity, 13, lrr-2010-7 (2010). [External LinkDOI], [External LinkADS]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2010-7.
310 Merritt, D., Alexander, T., Mikkola, S. and Will, C.M., “Stellar dynamics of extreme-mass-ratio inspirals”, Phys. Rev. D, 84, 044024 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.3180 [astro-ph.CO]].
311 Mignemi, S. and Stewart, N.R., “Dilaton-axion hair for slowly rotating Kerr black holes”, Phys. Lett. B, 298, 299–304 (1993). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/9206018].
312 Miller, M.C., Freitag, M., Hamilton, D.P. and Lauburg, V.M., “Binary Encounters with Supermassive Black Holes: Zero-Eccentricity LISA Events”, Astrophys. J. Lett., 631, L117–L120 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0507133].
313 Miralda-Escudé, J. and Gould, A., “A Cluster of Black Holes at the Galactic Center”, Astrophys. J., 545, 847–853 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0003269].
314 Mirshekari, S., Yunes, N. and Will, C.M., “Constraining Lorentz-violating, modified dispersion relations with gravitational waves”, Phys. Rev. D, 85, 024041 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.2720 [gr-qc]].
315 Mishra, C.K., Arun, K.G., Iyer, B.R. and Sathyaprakash, B.S., “Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope”, Phys. Rev. D, 82, 064010 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.0304 [gr-qc]].
316 Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P. and Inoue, M., “Evidence for a Black-Hole from High Rotation Velocities in a Sub-Parsec Region of NGC4258”, Nature, 373, 127–129 (1995). [External LinkDOI], [External LinkADS].
317 Moffat, J.W., “Scalar-tensor-vector gravity theory”, J. Cosmol. Astropart. Phys., 2006(03), 004 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0506021].
318 Moffat, J.W. and Toth, V.T., “Modified Gravity: Cosmology without dark matter or Einstein’s cosmological constant”, arXiv, e-print, (2007). [External LinkADS], [External LinkarXiv:0710.0364].
319 Moffat, J.W. and Toth, V.T., “Testing Modified Gravity with Globular Cluster Velocity Dispersions”, Astrophys. J., 680, 1158–1161 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0708.1935].
320 Molina, C., Pani, P., Cardoso, V. and Gualtieri, L., “Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity”, Phys. Rev. D, 81, 124021 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.4007 [gr-qc]].
321 Moore, C.J., Cole, R.H. and Berry, C.P.L., “Gravitational Wave Sensitivity Curve Plotter”, project homepage, University of Cambridge. URL (accessed 26 July 2013):
External Linkhttp://www.ast.cam.ac.uk/~rhc26/sources/.
322 Moore, T.A. and Hellings, R.W., “Angular resolution of space-based gravitational wave detectors”, Phys. Rev. D, 65, 062001 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9910116].
323 Motohashi, H. and Suyama, T., “Black hole perturbation in nondynamical and dynamical Chern-Simons gravity”, Phys. Rev. D, 85, 044054 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.6241 [gr-qc]].
324 Nakao, K.-I., Harada, T., Shibata, M., Kawamura, S. and Nakamura, T., “Response of interferometric detectors to scalar gravitational waves”, Phys. Rev. D, 63, 082001 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0006079].
325 Nakayama, K., Saito, S., Suwa, Y. and Yokoyama, J., “Space-based gravitational-wave detectors can determine the thermal history of the early Universe”, Phys. Rev. D, 77, 124001 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0802.2452 [hep-ph]].
326 Narayan, R., “Hydrodynamic Drag on a Compact Star Orbiting a Supermassive Black Hole”, Astrophys. J., 536, 663–667 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9907328].
327 Nelemans, G., “LISA Verification Binaries”, web interface to database, Radboud University. URL (accessed 26 July 2013):
External Linkhttp://www.astro.ru.nl/~nelemans/dokuwiki/doku.php?id=verification_binaries:intro.
328 Nelemans, G., Portegies Zwart, S.F., Verbunt, F. and Yungelson, L.R., “Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars”, Astron. Astrophys., 368, 939–949 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0101123].
329 Nelemans, G., Yungelson, L.R. and Portegies Zwart, S.F., “The gravitational wave signal from the Galactic disk population of binaries containing two compact objects”, Astron. Astrophys., 375, 890–898 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0105221].
330 Nelemans, G., Yungelson, L.R., Portegies Zwart, S.F. and Verbunt, F., “Population synthesis for double white dwarfs. I. Close detached systems”, Astron. Astrophys., 365, 491–507 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0010457].
331 Nishizawa, A., Taruya, A., Hayama, K., Kawamura, S. and Sakagami, M.-A., “Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers”, Phys. Rev. D, 79, 082002 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.0528 [astro-ph.CO]].
332 Nishizawa, A., Taruya, A. and Kawamura, S., “Cosmological test of gravity with polarizations of stochastic gravitational waves around 0.1–1 Hz”, Phys. Rev. D, 81, 104043 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0911.0525 [gr-qc]].
333 Nishizawa, A., Taruya, A. and Saito, S., “Tracing the redshift evolution of Hubble parameter with gravitational-wave standard sirens”, Phys. Rev. D, 83, 084045 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1011.5000 [astro-ph.CO]].
334 Nishizawa, A., Yagi, K., Taruya, A. and Tanaka, T., “Gravitational-wave standard siren without redshift identification”, J. Phys.: Conf. Ser., 363, 012052 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.2877 [astro-ph.CO]].
335 Nissanke, S., Vallisneri, M., Nelemans, G. and Prince, T.A., “Gravitational-wave Emission from Compact Galactic Binaries”, Astrophys. J., 758, 131 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.4613 [astro-ph.GA]].
336 Nojiri, S. and Odintsov, S.D., “Introduction to Modified Gravity and Gravitational Alternative for Dark Energy”, Int. J. Geom. Meth. Mod. Phys., 4, 115–145 (2007). [External LinkDOI], [External Linkhep-th/0601213].
337 Nollert, H.-P., “Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars”, Class. Quantum Grav., 16, 159 (1999). [External LinkDOI], [External LinkADS].
338 Norton, J., “What was Einstein’s principle of equivalence?”, in Howard, D. and Stachel, J., eds., Einstein and the History of General Relativity, Based on the proceedings of the 1986 Osgood Hill Conference, North Andover, Massachusetts, 8 – 11 May, Einstein Studies, 1, pp. 5–47, (Birkhäuser, Boston; Basel, 1989). [External LinkADS].
339 Norton, J.D., “General covariance and the foundations of general relativity: eight decades of dispute”, Rep. Prog. Phys., 56, 791–858 (1993). [External LinkDOI], [External LinkADS].
340 Okawara, H., Yamada, K. and Asada, H., “Possible Daily and Seasonal Variations in Quantum Interference Induced by Chern-Simons Gravity”, Phys. Rev. Lett., 109, 231101 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1210.4628 [gr-qc]].
341 Oppenheimer, J.R. and Snyder, H., “On Continued Gravitational Contraction”, Phys. Rev., 56, 455–459 (1939). [External LinkDOI], [External LinkADS].
342 Pai, A. and Arun, K.G., “Singular value decomposition in parametrized tests of post-Newtonian theory”, Class. Quantum Grav., 30, 025011 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1207.1943 [gr-qc]].
343 Paik, H.J., “Response of a disk antenna to scalar and tensor gravitational waves”, Phys. Rev. D, 15, 409–415 (1977). [External LinkDOI], [External LinkADS].
344 Pan, Y., Buonanno, A., Boyle, M., Buchman, L.T., Kidder, L.E., Pfeiffer, H.P. and Scheel, M.A., “Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism”, Phys. Rev. D, 84, 124052 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.1021 [gr-qc]].
345 Pan, Y., Buonanno, A., Buchman, L.T., Chu, T., Kidder, L.E., Pfeiffer, H.P. and Scheel, M.A., “Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonprecessing, spinning, equal-mass black holes”, Phys. Rev. D, 81, 084041 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.3466 [gr-qc]].
346 Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the absence of an event horizon: Nonradial oscillations of a thin-shell gravastar”, Phys. Rev. D, 80, 124047 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.0287 [gr-qc]].
347 Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the absence of an event horizon. II. Extreme mass ratio inspirals in the spacetime of a thin-shell gravastar”, Phys. Rev. D, 81, 084011 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1001.3031 [gr-qc]].
348 Pani, P., Cardoso, V. and Gualtieri, L., “Gravitational waves from extreme mass-ratio inspirals in dynamical Chern-Simons gravity”, Phys. Rev. D, 83, 104048 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.1183 [gr-qc]].
349 Pani, P., Macedo, C.F.B., Crispino, L.C.B. and Cardoso, V., “Slowly rotating black holes in alternative theories of gravity”, Phys. Rev. D, 84, 087501 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1109.3996 [gr-qc]].
350 Pauli, W. and Fierz, M., “Über relativistische Feldgleichungen von Teilchen mit beliebigem Spin im elektromagnetischen Feld”, Helv. Phys. Acta, 12, 297–300 (1939).
351 Penrose, R., “Gravitational Collapse and Space-Time Singularities”, Phys. Rev. Lett., 14, 57–59 (1965). [External LinkDOI], [External LinkADS].
352 Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276 (1969). [External LinkADS].
353 Peters, P.C., “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev., 136, B1224–B1232 (1964). [External LinkDOI], [External LinkADS].
354 Peters, P.C. and Mathews, J., “Gravitational Radiation from Point Masses in a Keplerian Orbit”, Phys. Rev., 131, 435–440 (1963). [External LinkDOI], [External LinkADS].
355 Petiteau, A., Babak, S. and Sesana, A., “Constraining the Dark Energy Equation of State Using LISA Observations of Spinning Massive Black Hole Binaries”, Astrophys. J., 732, 82 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.0769 [astro-ph.CO]].
356 Petiteau, A., Shang, Y., Babak, S. and Feroz, F., “Search for spinning black hole binaries in mock LISA data using a genetic algorithm”, Phys. Rev. D, 81, 104016 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1001.5380 [gr-qc]].
357 Phinney, E.S. et al., The Big Bang Observer: direct detection of gravitational waves from the birth of the Universe to the present, (NASA, Washington, DC, 2003).
358 Piran, T., “The role of viscosity and cooling mechanisms in the stability of accretion disks”, Astrophys. J., 221, 652–660 (1978). [External LinkDOI], [External LinkADS].
359 Plowman, J.E., Hellings, R.W. and Tsuruta, S., “Constraining the black hole mass spectrum with gravitational wave observations – II. Direct comparison of detailed models”, Mon. Not. R. Astron. Soc., 415, 333–352 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.0765 [astro-ph.CO]].
360 Plowman, J.E., Jacobs, D.C., Hellings, R.W., Larson, S.L. and Tsuruta, S., “Constraining the black hole mass spectrum with gravitational wave observations - I. The error kernel”, Mon. Not. R. Astron. Soc., 401, 2706–2714 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.2059 [astro-ph.CO]].
361 Poisson, E., A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, (Cambridge University Press, Cambridge; New York, 2004). [External LinkADS], [External LinkGoogle Books].
362 Poisson, E., Pound, A. and Vega, I., “The Motion of Point Particles in Curved Spacetime”, Living Rev. Relativity, 14, lrr-2011-7 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.0529 [gr-qc]]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2011-7.
363 Polchinski, J., String Theory. Vol. 2: Superstring Theory and Beyond, Cambridge Monographs on Mathematical Physics, 2, (Cambridge University Press, Cambridge; New York, 1998). [External LinkGoogle Books].
364 Poon, M.Y. and Merritt, D., “Triaxial Black Hole Nuclei”, Astrophys. J. Lett., 568, L89–L92 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0111020].
365 Porter, E.K. and Cornish, N.J., “Effect of higher harmonic corrections on the detection of massive black hole binaries with LISA”, Phys. Rev. D, 78, 064005 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0804.0332 [gr-qc]].
366 Pound, A., “Second-Order Gravitational Self-Force”, Phys. Rev. Lett., 109, 051101 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.5089 [gr-qc]].
367 Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0507014].
368 Pretorius, F., “Binary Black Hole Coalescence”, in Colpi, M., Casella, P., Gorini, V., Moschella, U. and Possenti, A., eds., Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, Astrophysics and Space Science Library, 359, pp. 305–369, (Springer, Berlin; New York, 2009). [External LinkarXiv:0710.1338], [External LinkGoogle Books].
369 Prince, T.A., Tinto, M., Larson, S.L. and Armstrong, J.W., “LISA optimal sensitivity”, Phys. Rev. D, 66, 122002 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0209039].
370 Prince, T.A. et al., LISA: Probing the Universe with Gravitational Waves, LISA-LIST-RP-436, (National Research Council, Washington, DC, 2009). Online version (accessed 1 August 2013):
External Linkhttp://list.caltech.edu/mission_documents. Science case document (March 2009).
371 Psaltis, D., “Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum”, Living Rev. Relativity, 11, lrr-2008-9 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.1531]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2008-9.
372 Psaltis, D., Perrodin, D., Dienes, K.R. and Mocioiu, I., “Kerr Black Holes Are Not Unique to General Relativity”, Phys. Rev. Lett., 100, 091101 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0710.4564].
373 Randall, L. and Sundrum, R., “An Alternative to Compactification”, Phys. Rev. Lett., 83, 4690–4693 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/9906064].
374 Rastall, P., “The Newtonian theory of gravitation and its generalization”, Can. J. Phys., 57, 944–973 (1979). [External LinkDOI], [External LinkADS].
375 Rauch, K.P. and Ingalls, B., “Resonant tidal disruption in galactic nuclei”, Mon. Not. R. Astron. Soc., 299, 1231–1241 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9710288].
376 Rauch, K.P. and Tremaine, S., “Resonant relaxation in stellar systems”, New Astronomy, 1, 149–170 (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9603018].
377 Rees, M.J., “Black Hole Models for Active Galactic Nuclei”, Annu. Rev. Astron. Astrophys., 22, 471–506 (1984). [External LinkDOI], [External LinkADS].
378 Reynaud, S., Salomon, C. and Wolf, P., “Testing General Relativity with Atomic Clocks”, Space Sci. Rev., 148, 233–247 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.1166 [quant-ph]].
379 Robinson, D.C., “Uniqueness of the Kerr black hole”, Phys. Rev. Lett., 34, 905–906 (1975). [External LinkDOI], [External LinkADS].
380 Roedig, C. and Sesana, A., “Origin and Implications of high eccentricities in massive black hole binaries at sub-pc scales”, J. Phys.: Conf. Ser., 363, 012035 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.3742 [astro-ph.CO]].
381 Rosen, N., “Theory of Gravitation”, Phys. Rev. D, 3, 2317–2319 (1971). [External LinkDOI], [External LinkADS].
382 Rosen, N., “A bi-metric theory of gravitation”, Gen. Relativ. Gravit., 4, 435–447 (1973). [External LinkDOI], [External LinkADS].
383 Rosen, N., “A theory of gravitation”, Ann. Phys. (N.Y.), 84, 455–473 (1974). [External LinkDOI], [External LinkADS].
384 Rosen, N., “A bi-metric theory of gravitation. II.”, Gen. Relativ. Gravit., 6, 259–268 (1975). [External LinkDOI], [External LinkADS].
385 Rubbo, L.J., Holley-Bockelmann, K. and Finn, L.S., “Event Rate for Extreme Mass Ratio Burst Signals in the Laser Interferometer Space Antenna Band”, Astrophys. J. Lett., 649, L25–L28 (2006). [External LinkDOI], [External LinkADS].
386 Ruiter, A.J., Belczynski, K., Benacquista, M., Larson, S.L. and Williams, G., “The LISA Gravitational Wave Foreground: A Study of Double White Dwarfs”, Astrophys. J., 717, 1006–1021 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0705.3272].
387 Ryan, F.D., “Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments”, Phys. Rev. D, 52, 5707–5718 (1995). [External LinkDOI], [External LinkADS].
388 Ryan, F.D., “Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral”, Phys. Rev. D, 56, 1845–1855 (1997). [External LinkDOI], [External LinkADS].
389 Ryan, F.D., “Spinning boson stars with large self-interaction”, Phys. Rev. D, 55, 6081–6091 (1997). [External LinkDOI], [External LinkADS].
390 Saito, R. and Yokoyama, J., “Gravitational-Wave Background as a Probe of the Primordial Black-Hole Abundance”, Phys. Rev. Lett., 102, 161101 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.4339].
391 Sakimoto, P.J. and Coroniti, F.V., “Accretion disk models for QSOs and active galactic nuclei: The role of magnetic viscosity”, Astrophys. J., 247, 19–31 (1981). [External LinkDOI], [External LinkADS].
392 Sanders, R.H., “A tensor-vector-scalar framework for modified dynamics and cosmic dark matter”, Mon. Not. R. Astron. Soc., 363, 459–468 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0502222].
393 Santamaría, L. et al., “Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries”, Phys. Rev. D, 82, 064016 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.3306 [gr-qc]].
394 Sasaki, M. and Tagoshi, H., “Analytic Black Hole Perturbation Approach to Gravitational Radiation”, Living Rev. Relativity, 6, lrr-2003-6 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0306120]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2003-6.
395 Sathyaprakash, B.S. and Schutz, B.F., “Physics, Astrophysics and Cosmology with Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.0338 [gr-qc]]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2009-2.
396 Sawado, N., Shiiki, N., Maeda, K.-I. and Torii, T., “Regular and Black Hole Skyrmions with Axisymmetry”, Gen. Relativ. Gravit., 36, 1361–1371 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0401020].
397 Scharre, P.D. and Will, C.M., “Testing scalar-tensor gravity using space gravitational-wave interferometers”, Phys. Rev. D, 65, 042002 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0109044].
398 Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D. and Pfeiffer, H.P., “High-accuracy waveforms for binary black hole inspiral, merger, and ringdown”, Phys. Rev. D, 79, 024003 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0810.1767 [gr-qc]].
399 Schlamminger, S., Choi, K.-Y., Wagner, T.A., Gundlach, J.H. and Adelberger, E.G., “Test of the Equivalence Principle Using a Rotating Torsion Balance”, Phys. Rev. Lett., 100, 041101 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.0607 [gr-qc]].
400 Schutz, B.F., “From Classical Theory to Quantum Gravity”, Space Sci. Rev., 148, 15–23 (2009). [External LinkDOI], [External LinkADS].
401 Schwarzschild, K., “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(VII), 189–196 (1916). [External LinkADS], [External Linkphysics/9905030].
402 Seifert, M.D., “Stability of spherically symmetric solutions in modified theories of gravity”, Phys. Rev. D, 76, 064002 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0703060].
403 Sepinsky, J.F., Willems, B., Kalogera, V. and Rasio, F.A., “Interacting Binaries with Eccentric Orbits: Secular Orbital Evolution Due to Conservative Mass Transfer”, Astrophys. J., 667, 1170–1184 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0706.4312].
404 Sepinsky, J.F., Willems, B., Kalogera, V. and Rasio, F.A., “Interacting Binaries with Eccentric Orbits. II. Secular Orbital Evolution due to Non-conservative Mass Transfer”, Astrophys. J., 702, 1387–1392 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.0621 [astro-ph.SR]].
405 Sesana, A., Gair, J.R., Berti, E. and Volonteri, M., “Reconstructing the massive black hole cosmic history through gravitational waves”, Phys. Rev. D, 83, 044036 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1011.5893 [astro-ph.CO]].
406 Sesana, A., Volonteri, M. and Haardt, F., “LISA detection of massive black hole binaries: imprint of seed populations and extreme recoils”, Class. Quantum Grav., 26, 094033 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0810.5554].
407 Seto, N. and Cooray, A., “LISA measurement of gravitational wave background anisotropy: Hexadecapole moment via a correlation analysis”, Phys. Rev. D, 70, 123005 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0403259].
408 Seto, N., Kawamura, S. and Nakamura, T., “Possibility of Direct Measurement of the Acceleration of the Universe Using 0.1 Hz Band Laser Interferometer Gravitational Wave Antenna in Space”, Phys. Rev. Lett., 87, 221103 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0108011].
409 Shakura, N.I. and Sunyaev, R.A., “Black Holes in Binary Systems. Observational Appearance”, Astron. Astrophys., 24, 337–355 (1973). [External LinkADS].
410 Shakura, N.I. and Sunyaev, R.A., “A theory of the instability of disk accretion on to black holes and the variability of binary X-ray sources, galactic nuclei and quasars”, Mon. Not. R. Astron. Soc., 175, 613–632 (1976). [External LinkADS].
411 Shapiro, S.L., “Numerical Relativity at the Frontier”, Prog. Theor. Phys. Suppl., 163, 100–119 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0509094].
412 Shibata, M., Nakao, K. and Nakamura, T., “Scalar-type gravitational wave emission from gravitational collapse in Brans-Dicke theory: Detectability by a laser interferometer”, Phys. Rev. D, 50, 7304–7317 (1994). [External LinkDOI], [External LinkADS].
413 Shiiki, N. and Sawado, N., “Regular and black hole solutions in the Einstein Skyrme theory with negative cosmological constant”, Class. Quantum Grav., 22, 3561–3573 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0503123].
414 Sivia, D.S., Data Analysis: A Bayesian Tutorial, (Oxford University Press, Oxford; New York, 2006), 2nd edition.
415 Soffel, M.H., Relativity in Astrometry, Celestial Mechanics and Geodesy, Astronomy and Astrophysics Library, (Springer, Berlin; New York, 1989). [External LinkDOI], [External LinkADS].
416 Sopuerta, C.F. and Yunes, N., “Extreme- and intermediate-mass ratio inspirals in dynamical Chern-Simons modified gravity”, Phys. Rev. D, 80, 064006 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.4501 [gr-qc]].
417 Sota, Y., Suzuki, S. and Maeda, K.-I., “Chaos in static axisymmetric spacetimes: I. Vacuum case”, Class. Quantum Grav., 13, 1241–1260 (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9505036].
418 Sotiriou, T.P., “The nearly Newtonian regime in non-linear theories of gravity”, Gen. Relativ. Gravit., 38, 1407–1417 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0507027].
419 Sotiriou, T.P. and Faraoni, V., “f(R) theories of gravity”, Rev. Mod. Phys., 82, 451–497 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0805.1726 [gr-qc]].
420 Sotiriou, T.P. and Faraoni, V., “Black Holes in Scalar-Tensor Gravity”, Phys. Rev. Lett., 108, 081103 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1109.6324 [gr-qc]].
421 Sperhake, U., Berti, E. and Cardoso, V., “Numerical simulations of black-hole binaries and gravitational wave emission”, C. R. Physique, 14, 306–317 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.2819 [gr-qc]].
422 Stairs, I.H., “Testing General Relativity with Pulsar Timing”, Living Rev. Relativity, 6, lrr-2003-5 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0307536]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2003-5.
423 Starobinsky, A., “A new type of isotropic cosmological models without singularity”, Phys. Lett. B, 91, 99–102 (1980). [External LinkDOI], [External LinkADS].
424 Stavridis, A. and Will, C.M., “Bounding the mass of the graviton with gravitational waves: Effect of spin precessions in massive black hole binaries”, Phys. Rev. D, 80, 044002 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.3602 [gr-qc]].
425 Stavridis, A. and Will, C.M., “Effect of spin precession on bounding the mass of the graviton using gravitational waves from massive black hole binaries”, J. Phys.: Conf. Ser., 228, 012049 (2010). [External LinkDOI], [External LinkADS].
426 Stein, L.C. and Yunes, N., “Effective gravitational wave stress-energy tensor in alternative theories of gravity”, Phys. Rev. D, 83, 064038 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1012.3144 [gr-qc]].
427 Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2003), 2nd edition. [External LinkADS], [External LinkGoogle Books].
428 Straumann, N. and Zhou, Z.-H., “Instability of a colored black hole solution”, Phys. Lett. B, 243, 33–35 (1990). [External LinkDOI], [External LinkADS].
429 Stroeer, A., Gair, J.R. and Vecchio, A., “Automatic Bayesian inference for LISA data analysis strategies”, in Merkovitz, S.M. and Livas, J.C., eds., Laser Interferometer Space Antenna: 6th International LISA Symposium, 6th International LISA Symposium, Greenbelt, MD, USA, 19 – 23 June 2006, AIP Conference Proceedings, 873, pp. 444–451, (American Institute of Physics, Melville, NY, 2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0609010].
430 Stroeer, A. and Vecchio, A., “The LISA verification binaries”, Class. Quantum Grav., 23, S809–S818 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0605227].
431 Stroeer, A. et al., “Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets”, Class. Quantum Grav., 24, 541 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.0048 [gr-qc]].
432 Suen, W.-M., “Distorted black holes in terms of multipole moments”, Phys. Rev. D, 34, 3633–3637 (1986). [External LinkDOI], [External LinkADS].
433 Svrcek, P. and Witten, E., “Axions in string theory”, J. High Energy Phys., 2006(06), 051 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0605206].
434 Tabor, M., “The Kolmogorov–Arnold–Moser Theorem”, in Chaos and Integrability in Nonlinear Dynamics: An Introduction, pp. 105–112, (Wiley, New York; Chichester, 1989).
435 Talmadge, C., Berthias, J.-P., Hellings, R.W. and Standish, E.M., “Model-independent constraints on possible modifications of Newtonian gravity”, Phys. Rev. Lett., 61, 1159–1162 (1988). [External LinkDOI], [External LinkADS].
436 Tanaka, T., “Classical Black Hole Evaporation in Randall-Sundrum Infinite Braneworld”, Prog. Theor. Phys. Suppl., 148, 307–316 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0203082].
437 Tanaka, T. and Haiman, Z., “The Assembly of Supermassive Black Holes at High Redshifts”, Astrophys. J., 696, 1798–1822 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.4702].
438 Taracchini, A. et al., “Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms”, Phys. Rev. D, 86, 024011 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.0790 [gr-qc]].
439 Timpano, S.E., Rubbo, L.J. and Cornish, N.J., “Characterizing the galactic gravitational wave background with LISA”, Phys. Rev. D, 73, 122001 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0504071].
440 Tinto, M. and Alves, M.E.S., “LISA sensitivities to gravitational waves from relativistic metric theories of gravity”, Phys. Rev. D, 82, 122003 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.1302 [gr-qc]].
441 Tremaine, S. et al., “The Slope of the Black Hole Mass versus Velocity Dispersion Correlation”, Astrophys. J., 574, 740–753 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0203468].
442 Trias, M. and Sintes, A.M., “LISA observations of supermassive black holes: Parameter estimation using full post-Newtonian inspiral waveforms”, Phys. Rev. D, 77, 024030 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.4434 [gr-qc]].
443 Turyshev, S.G., “Experimental Tests of General Relativity”, Annu. Rev. Nucl. Part. Sci., 58, 207–248 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.1731 [gr-qc]].
444 Turyshev, S.G., “Experimental tests of general relativity: recent progress and future directions”, Phys. Usp., 52, 1–27 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.3730 [gr-qc]].
445 Uzan, J.-P., “Varying Constants, Gravitation and Cosmology”, Living Rev. Relativity, 14, lrr-2011-2 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.5514 [astro-ph.CO]]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2011-2.
446 Vainshtein, A.I., “To the problem of nonvanishing gravitation mass”, Phys. Lett. B, 39, 393–394 (1972). [External LinkDOI], [External LinkADS].
447 Vallisneri, M., “Geometric time delay interferometry”, Phys. Rev. D, 72, 042003 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0504145].
448 Vallisneri, M., “Synthetic LISA: Simulating time delay interferometry in a model LISA”, Phys. Rev. D, 71, 022001 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0407102].
449 Vallisneri, M., “Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects”, Phys. Rev. D, 77, 042001 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0703086].
450 Vallisneri, M., “A LISA data-analysis primer”, Class. Quantum Grav., 26, 094024 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.0751 [gr-qc]].
451 Vallisneri, M., “Testing general relativity with gravitational waves: A reality check”, Phys. Rev. D, 86, 082001 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1207.4759 [gr-qc]].
452 Vallisneri, M., Crowder, J. and Tinto, M., “Sensitivity and parameter-estimation precision for alternate LISA configurat ions”, Class. Quantum Grav., 25, 065005 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0710.4369].
453 Vallisneri, M. and Yunes, N., “Stealth bias in gravitational-wave parameter estimation”, Phys. Rev. D, 87, 102002 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1301.2627 [gr-qc]].
454 van Dam, H. and Veltman, M., “Massive and mass-less Yang-Mills and gravitational fields”, Nucl. Phys. B, 22, 397–411 (1970). [External LinkDOI], [External LinkADS].
455 Vecchio, A., “LISA observations of rapidly spinning massive black hole binary systems”, Phys. Rev. D, 70, 042001 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0304051].
456 Veitch, J. and Vecchio, A., “Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection”, Class. Quantum Grav., 25, 184010 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.4483 [gr-qc]].
457 Veitch, J. and Vecchio, A., “Bayesian approach to the follow-up of candidate gravitational wave signals”, Phys. Rev. D, 78, 022001 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0801.4313 [gr-qc]].
458 Vigeland, S., Yunes, N. and Stein, L.C., “Bumpy black holes in alternative theories of gravity”, Phys. Rev. D, 83, 104027 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.3706 [gr-qc]].
459 Vilenkin, A., “Classical and quantum cosmology of the Starobinsky inflationary model”, Phys. Rev. D, 32, 2511–2521 (1985). [External LinkDOI].
460 Volonteri, M., Madau, P. and Haardt, F., “The Formation of Galaxy Stellar Cores by the Hierarchical Merging of Supermassive Black Holes”, Astrophys. J., 593, 661–666 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0304389].
461 Wagoner, R.V., “Resonant-Mass Detection of Tensor and Scalar Waves”, in Marck, J.-A. and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, pp. 419–432, (Cambridge University Press, Cambridge, U.K., 1997). [External LinkADS].
462 Wahlquist, H., “The Doppler response to gravitational waves from a binary star source”, Gen. Relativ. Gravit., 19, 1101–1113 (1987). [External LinkDOI], [External LinkADS].
463 Walker, M. and Penrose, R., “On quadratic first integrals of the geodesic equations for type {22} spacetimes”, Commun. Math. Phys., 18, 265–274 (1970). [External LinkDOI], [External LinkADS].
464 Wang, Y., Shang, Y. and Babak, S., “Extreme mass ratio inspiral data analysis with a phenomenological waveform”, Phys. Rev. D, 86, 104050 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1207.4956 [gr-qc]].
465 Warburton, N., Akcay, S., Barack, L., Gair, J.R. and Sago, N., “Evolution of inspiral orbits around a Schwarzschild black hole”, Phys. Rev. D, 85, 061501 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.6908 [gr-qc]].
466 Warburton, N. and Barack, L., “Self-force on a scalar charge in Kerr spacetime: Eccentric equatorial orbits”, Phys. Rev. D, 83, 124038 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1103.0287 [gr-qc]].
467 Wen, L. and Gair, J.R., “Detecting extreme mass ratio inspirals with LISA using time–frequency methods”, Class. Quantum Grav., 22, S445–S452 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0502100].
468 Wesley, D.H., Steinhardt, P.J. and Turok, N., “Controlling chaos through compactification in cosmological models with a collapsing phase”, Phys. Rev. D, 72, 063513 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0502108].
469 Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1993), 2nd edition. [External LinkGoogle Books].
470 Will, C.M., “Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries”, Phys. Rev. D, 57, 2061–2068 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9709011].
471 Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 9, lrr-2006-3 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0510072]. URL (accessed 26 July 2013):
http://www.livingreviews.org/lrr-2006-3.
472 Will, C.M., “Carter-like Constants of the Motion in Newtonian Gravity and Electrodynamics”, Phys. Rev. Lett., 102, 061101 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.0110 [gr-qc]].
473 Will, C.M. and Yunes, N., “Testing alternative theories of gravity using LISA”, Class. Quantum Grav., 21, 4367–4381 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0403100].
474 Willems, B., Deloye, C.J. and Kalogera, V., “Energy Dissipation Through Quasi-static Tides in White Dwarf Binaries”, Astrophys. J., 713, 239–256 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.1953 [astro-ph.SR]].
475 Willems, B., Vecchio, A. and Kalogera, V., “Probing White Dwarf Interiors with LISA: Periastron Precession in Eccentric Double White Dwarfs”, Phys. Rev. Lett., 100, 041102 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0706.3700].
476 Williams, J.G., Turyshev, S.G. and Boggs, D.H., “Progress in Lunar Laser Ranging Tests of Relativistic Gravity”, Phys. Rev. Lett., 93, 261101 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0411113].
477 Wiseman, A.G., “Coalescing binary systems of compact objects to (post)52-Newtonian order. II. Higher-order wave forms and radiation recoil”, Phys. Rev. D, 46, 1517–1539 (1992). [External LinkDOI], [External LinkADS].
478 Wiseman, A.G., “Coalescing binary systems of compact objects to (post)52-Newtonian order. IV. The gravitational wave tail”, Phys. Rev. D, 48, 4757–4770 (1993). [External LinkDOI], [External LinkADS].
479 Witek, H., Cardoso, V., Ishibashi, A. and Sperhake, U., “Superradiant instabilities in astrophysical systems”, Phys. Rev. D, 87, 043513 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1212.0551 [gr-qc]].
480 Yagi, K., “Gravitational wave observations of galactic intermediate-mass black hole binaries with DECIGO path finder”, Class. Quantum Grav., 29, 075005 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.3512 [astro-ph.CO]].
481 Yagi, K., “New constraint on scalar Gauss-Bonnet gravity and a possible explanation for the excess of the orbital decay rate in a low-mass x-ray binary”, Phys. Rev. D, 86, 081504 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.4524 [gr-qc]].
482 Yagi, K., “Scientific Potential of DECIGO Pathfinder and Testing GR with Space-Borne Gravitational Wave Interferometers”, Int. J. Mod. Phys. D, 22, 1341013 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.2388 [gr-qc]].
483 Yagi, K., Stein, L.C., Yunes, N. and Tanaka, T., “Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity”, Phys. Rev. D, 85, 064022 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.5950 [gr-qc]].
484 Yagi, K., Tanahashi, N. and Tanaka, T., “Probing the size of extra dimensions with gravitational wave astronomy”, Phys. Rev. D, 83, 084036 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1101.4997 [gr-qc]].
485 Yagi, K. and Tanaka, T., “Constraining alternative theories of gravity by gravitational waves from precessing eccentric compact binaries with LISA”, Phys. Rev. D, 81, 064008 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.4269 [gr-qc]].
486 Yagi, K. and Tanaka, T., “DECIGO/BBO as a Probe to Constrain Alternative Theories of Gravity”, Prog. Theor. Phys., 123, 1069–1078 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0908.3283 [gr-qc]].
487 Yagi, K., Yunes, N. and Tanaka, T., “Gravitational Waves from Quasicircular Black-Hole Binaries in Dynamical Chern-Simons Gravity”, Phys. Rev. Lett., 109, 251105 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.5102 [gr-qc]].
488 Yagi, K., Yunes, N. and Tanaka, T., “Slowly rotating black holes in dynamical Chern-Simons gravity: Deformation quadratic in the spin”, Phys. Rev. D, 86, 044037 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1206.6130 [gr-qc]].
489 Yoshino, H. and Kodama, H., “Bosenova Collapse of Axion Cloud around a Rotating Black Hole”, Prog. Theor. Phys., 128, 153–190 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1203.5070 [gr-qc]].
490 Yu, Q. and Tremaine, S., “Observational constraints on growth of massive black holes”, Mon. Not. R. Astron. Soc., 335, 965–976 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0203082].
491 Yunes, N. and Finn, L.S., “Constraining effective quantum gravity with LISA”, J. Phys.: Conf. Ser., 154, 012041 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.0181 [gr-qc]].
492 Yunes, N. and Hughes, S.A., “Binary pulsar constraints on the parametrized post-Einsteinian framework”, Phys. Rev. D, 82, 082002 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1007.1995 [gr-qc]].
493 Yunes, N., Kocsis, B., Loeb, A. and Haiman, Z., “Imprint of Accretion Disk-Induced Migration on Gravitational Waves from Extreme Mass Ratio Inspirals”, Phys. Rev. Lett., 107, 171103 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1103.4609 [astro-ph.CO]].
494 Yunes, N., Miller, M.C. and Thornburg, J., “Effect of massive perturbers on extreme mass-ratio inspiral waveforms”, Phys. Rev. D, 83, 044030 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.1721 [astro-ph.GA]].
495 Yunes, N., Pani, P. and Cardoso, V., “Gravitational waves from quasicircular extreme mass-ratio inspirals as probes of scalar-tensor theories”, Phys. Rev. D, 85, 102003 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1112.3351 [gr-qc]].
496 Yunes, N. and Pretorius, F., “Dynamical Chern-Simons modified gravity: Spinning black holes in the slow-rotation approximation”, Phys. Rev. D, 79, 084043 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.4669 [gr-qc]].
497 Yunes, N. and Pretorius, F., “Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework”, Phys. Rev. D, 80, 122003 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.3328 [gr-qc]].
498 Yunes, N., Pretorius, F. and Spergel, D., “Constraining the evolutionary history of Newton’s constant with gravitational wave observations”, Phys. Rev. D, 81, 064018 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.2724 [gr-qc]].
499 Yunes, N., Psaltis, D., Özel, F. and Loeb, A., “Constraining parity violation in gravity with measurements of neutron-star moments of inertia”, Phys. Rev. D, 81, 064020 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.2736 [gr-qc]].
500 Yunes, N. and Siemens, X., “Gravitational Wave Tests of General Relativity with Ground-Based Detectors and Pulsar Timing Arrays”, Living Rev. Relativity, submitted, (2013). [External LinkADS], [External LinkarXiv:1304.3473 [gr-qc]].
501 Yunes, N. and Sopuerta, C.F., “Perturbations of Schwarzschild black holes in Chern-Simons modified gravity”, Phys. Rev. D, 77, 064007 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.1028 [gr-qc]].
502 Yunes, N., Sopuerta, C.F., Rubbo, L.J. and Holley-Bockelmann, K., “Relativistic Effects in Extreme Mass Ratio Gravitational Wave Bursts”, Astrophys. J., 675, 604–613 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.2612].
503 Yunes, N. and Spergel, D.N., “Double-binary-pulsar test of Chern-Simons modified gravity”, Phys. Rev. D, 80, 042004 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0810.5541 [gr-qc]].
504 Yunes, N. and Stein, L.C., “Nonspinning black holes in alternative theories of gravity”, Phys. Rev. D, 83, 104002 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1101.2921 [gr-qc]].
505 Zakharov, V.I., “Linearized Gravitation Theory and the Graviton Mass”, JETP Lett., 12, 312 (1970). [External LinkADS].