References
* | 1 | Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “The characterization of Virgo data and its impact on gravitational-wave searches”, Class. Quantum Grav., 29, 155002 (2012). [DOI], [ADS], [arXiv:1203.5613 [gr-qc]]. |
* | 2 | Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Open call for
partnership for the EM identification and follow-up of GW candidate events, LIGO
M1300550-v3 / VIR-0494E-13, (LIGO, Pasadena, CA, 2013). URL (accessed 25 September
2015): https://dcc.ligo.org/LIGO-M1300550-v8/public. |
* | 3 | Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network”, Phys. Rev. D, 88, 062001 (2013). [DOI], [ADS], [arXiv:1304.1775 [gr-qc]]. |
* | 4 | Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories”, arXiv, e-print, (2013). [ADS], [arXiv:1304.0670v1 [gr-qc]]. |
* | 5 | Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “First Searches for Optical Counterparts to Gravitational-wave Candidate Events”, Astrophys. J. Suppl. Ser., 211, 7 (2014). [DOI], [ADS], [arXiv:1310.2314 [astro-ph.IM]]. |
* | 6 | Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO600, LIGO, and Virgo detectors”, Phys. Rev. D, 89, 122004 (2014). [DOI], [ADS], [arXiv:1405.1053 [astro-ph.HE]]. |
* | 7 | Aasi, J. et al. (LIGO Scientific Collaboration, Virgo Collaboration and IPN Collaboration), “Search for gravitational waves associated with γ-ray bursts detected by the Interplanetary Network”, Phys. Rev. Lett., 113, 011102 (2014). [DOI], [ADS], [arXiv:1403.6639 [astro-ph.HE]]. |
* | 8 | Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), The LSC–Virgo
White Paper on Gravitational Wave Searches and Astrophysics (2014–2015 edition),
LIGO-T1400054-v6, (LIGO, Pasadena, CA, 2014). URL (accessed 23 June 2014): https://dcc.ligo.org/LIGO-T1400054/public. |
* | 9 | Aasi, J. et al. (LIGO Scientific Collaboration), “Advanced LIGO”, Class. Quantum Grav., 32, 074001 (2015). [DOI], [ADS], [arXiv:1411.4547 [gr-qc]]. |
* | 10 | Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Characterization of the LIGO detectors during their sixth science run”, Class. Quantum Grav., 32, 115012 (2015). [DOI], [ADS], [arXiv:1410.7764 [gr-qc]]. |
* | 11 | Aasi, J. et al. (LIGO Scientific Collaboration), Instrument Science White Paper,
LIGO-T1400316-v4, (LIGO, Pasadena, CA, 2015). URL (accessed 28 August 2015): https://dcc.ligo.org/LIGO-T1400316/public. |
* | 12 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run”, Phys. Rev. D, 81, 102001 (2010). [DOI], [ADS], [arXiv:1002.1036 [gr-qc]]. |
* | 13 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors”, Class. Quantum Grav., 27, 173001 (2010). [DOI], [ADS], [arXiv:1003.2480 [astro-ph.HE]]. |
* | 14 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “All-sky search for gravitational-wave bursts in the second joint LIGO–Virgo run”, Phys. Rev. D, 85, 122007 (2012). [DOI], [ADS], [arXiv:1202.2788 [gr-qc]]. |
* | 15 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts”, Astron. Astrophys., 541, A155 (2012). [DOI], [ADS], [arXiv:1112.6005 [astro-ph.CO]]. |
* | 16 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts”, Astron. Astrophys., 539, A124 (2012). [DOI], [ADS], [arXiv:1109.3498 [astro-ph.IM]]. |
* | 17 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), LSC and Virgo
Policy on Releasing Gravitational Wave Triggers to the Public in the Advanced Detectors Era,
LIGO M1200055-v2 / VIR-0173A-12, (LIGO, Pasadena, CA, 2012). URL (accessed 16 May
2013): https://dcc.ligo.org/LIGO-M1200055-v2/public. |
* | 18 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for Gravitational Waves Associated with Gamma-Ray Bursts during LIGO Science Run 6 and Virgo Science Runs 2 and 3”, Astrophys. J., 760, 12 (2012). [DOI], [ADS], [arXiv:1205.2216 [astro-ph.HE]]. |
* | 19 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3”, Phys. Rev. D, 85, 082002 (2012). [DOI], [ADS], [arXiv:1111.7314 [gr-qc]]. |
* | 20 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Sensitivity Achieved by the LIGO and Virgo Gravitational Wave Detectors during LIGO’s Sixth and Virgo’s Second and Third Science Runs”, arXiv, e-print, (2012). [ADS], [arXiv:1203.2674 [gr-qc]]. |
* | 21 | Abbott, B. P. et al. (LIGO Scientific Collaboration), “LIGO: The Laser interferometer gravitational-wave observatory”, Rep. Prog. Phys., 72, 076901 (2009). [DOI], [ADS], [arXiv:0711.3041 [gr-qc]]. |
* | 22 | Abbott, B. P. et al. (LIGO Scientific Collaboration), “Search for gravitational-wave bursts in the first year of the fifth LIGO science run”, Phys. Rev. D, 80, 102001 (2009). [DOI], [ADS], [arXiv:0905.0020 [gr-qc]]. |
* | 23 | Accadia, T. et al. (Virgo Collaboration), Advanced Virgo Technical Design Report,
VIR-0128A-12, (Virgo, Cascina, 2012). URL (accessed 16 May 2013): https://tds.ego-gw.it/ql/?c=8940. |
* | 24 | Acernese, F. et al. (Virgo Collaboration), Advanced Virgo Baseline Design, VIR-027A-09,
(Virgo, Cascina, 2009). URL (accessed 16 May 2013): https://tds.ego-gw.it/ql/?c=6589. |
* | 25 | Acernese, F. et al. (Virgo Collaboration), “Advanced Virgo: a second-generation interferometric gravitational wave detector”, Class. Quantum Grav., 32, 024001 (2015). [DOI], [ADS], [arXiv:1408.3978 [gr-qc]]. |
* | 26 | Adams, T. S., Meacher, D., Clark, J., Sutton, P. J., Jones, G. and Minot, A., “Gravitational-wave detection using multivariate analysis”, Phys. Rev. D, 88, 062006 (2013). [DOI], [ADS], [arXiv:1305.5714 [gr-qc]]. |
* | 27 | Allen, B., “χ2 time-frequency discriminator for gravitational wave detection”, Phys. Rev. D, 71, 062001 (2005). [DOI], [ADS], [arXiv:gr-qc/0405045 [gr-qc]]. |
* | 28 | Aso, Y., Michimura, Y., Somiya, K., Ando, M., Miyakawa, O., Sekiguchi, T., Tatsumi, D. and Yamamoto, H. (KAGRA Collaboration), “Interferometer design of the KAGRA gravitational wave detector”, Phys. Rev. D, 88, 043007 (2013). [DOI], [ADS], [arXiv:1306.6747 [gr-qc]]. |
* | 29 | Babak, S. et al., “Searching for gravitational waves from binary coalescence”, Phys. Rev. D, 87, 024033 (2013). [DOI], [ADS], [arXiv:1208.3491 [gr-qc]]. |
* | 30 | Barsotti, L. and Fritschel, P. (LIGO Scientific Collaboration), Early aLIGO Configurations:
example scenarios toward design sensitivity, LIGO-T1200307-v4, (LIGO, Pasadena, CA, 2012).
URL (accessed 23 June 2014): https://dcc.ligo.org/LIGO-T1200307/public. |
* | 31 | Berry, C. P. L. et al., “Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era”, Astrophys. J., 804, 114 (2015). [DOI], [ADS], [arXiv:1411.6934 [astro-ph.HE]]. |
* | 32 | Blackburn, L., Briggs, M. S., Camp, J., Christensen, N., Connaughton, V., Jenke, P., Remillard, R. A. and Veitch, J., “High-energy electromagnetic offline follow-up of LIGO-Virgo gravitational-wave binary coalescence candidate events”, Astrophys. J. Suppl. Ser., 217, 8 (2015). [DOI], [ADS], [arXiv:1410.0929 [astro-ph.HE]]. |
* | 33 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 17, lrr-2014-2 (2014). [DOI], [ADS], [arXiv:1310.1528 [gr-qc]]. |
* | 34 | Brown, D. A., Harry, I., Lundgren, A. and Nitz, A. H., “Detecting binary neutron star systems with spin in advanced gravitational-wave detectors”, Phys. Rev. D, 86, 084017 (2012). [DOI], [ADS], [arXiv:1207.6406 [gr-qc]]. |
* | 35 | Buonanno, A., Iyer, B., Ochsner, E., Pan, Y. and Sathyaprakash, B. S., “Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors”, Phys. Rev. D, 80, 084043 (2009). [DOI], [ADS], [arXiv:0907.0700 [gr-qc]]. |
* | 36 | Canizares, P., Field, S. E., Gair, J., Raymond, V., Smith, R. and Tiglio, M., “Accelerated gravitational-wave parameter estimation with reduced order modeling”, Phys. Rev. Lett., 114, 071104 (2015). [DOI], [ADS], [arXiv:1404.6284 [gr-qc]]. |
* | 37 | Canizares, P., Field, S. E., Gair, J. R. and Tiglio, M., “Gravitational wave parameter estimation with compressed likelihood evaluations”, Phys. Rev. D, 87, 124005 (2013). [DOI], [ADS], [arXiv:1304.0462 [gr-qc]]. |
* | 38 | Cannon, K., Hanna, C. and Peoples, J., “Likelihood-Ratio Ranking Statistic for Compact Binary Coalescence Candidates with Rate Estimation”, arXiv, e-print, (2015). [ADS], [arXiv:1504.04632 [astro-ph.IM]]. |
* | 39 | Cannon, K. et al., “Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence”, Astrophys. J., 748, 136 (2012). [DOI], [ADS], [arXiv:1107.2665 [astro-ph.IM]]. |
* | 40 | Chassande-Mottin, E., Miele, M., Mohapatra, S. and Cadonati, L., “Detection of gravitational-wave bursts with chirplet-like template families”, Class. Quantum Grav., 27, 194017 (2010). [DOI], [ADS], [arXiv:1005.2876 [gr-qc]]. Proceedings, 14th Workshop on Gravitational wave data analysis (GWDAW-14). |
* | 41 | Chatterji, S., Lazzarini, A., Stein, L., Sutton, P. J., Searle, A. and Tinto, M., “Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise”, Phys. Rev. D, 74, 082005 (2006). [DOI], [ADS], [arXiv:gr-qc/0605002]. |
* | 42 | Chen, H.-Y. and Holz, D. E., “Facilitating follow-up of LIGO–Virgo events using rapid sky localization”, arXiv, e-print, (2015). [ADS], [arXiv:1509.00055 [astro-ph.IM]]. |
* | 43 | Cornish, N. J. and Littenberg, T. B., “BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches”, Class. Quantum Grav., 32, 135012 (2015). [DOI], [ADS], [arXiv:1410.3835 [gr-qc]]. |
* | 44 | Cutler, C. and Flanagan, É. É., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?”, Phys. Rev. D, 49, 2658–2697 (1994). [DOI], [ADS], [arXiv:gr-qc/9402014 [gr-qc]]. |
* | 45 | Dal Canton, T., Lundgren, A. P. and Nielsen, A. B., “Impact of precession on aligned-spin searches for neutron-star–black-hole binaries”, Phys. Rev. D, 91, 062010 (2015). [DOI], [ADS], [arXiv:1411.6815 [gr-qc]]. |
* | 46 | Dal Canton, T. et al., “Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors”, Phys. Rev. D, 90, 082004 (2014). [DOI], [ADS], [arXiv:1405.6731 [gr-qc]]. |
* | 47 | de Mink, S. E. and Belczynski, K., “Merger rates of double neutron stars and stellar origin black holes: The Impact of Initial Conditions on Binary Evolution Predictions”, Astrophys. J., 814, 58 (2015). [DOI], [ADS], [arXiv:1506.03573 [astro-ph.HE]]. |
* | 48 | Dimmelmeier, H., Ott, C. D., Marek, A. and Janka, H.-T., “Gravitational wave burst signal from the core collapse of rotating stars”, Phys. Rev. D, 78, 064056 (2008). [DOI], [ADS], [arXiv:0806.4953 [astro-ph]]. |
* | 49 | Dominik, M., Belczynski, K., Fryer, C., Holz, D. E., Berti, E., Bulik, T., Mandel, I. and O’Shaughnessy, R., “Double Compact Objects II: Cosmological Merger Rates”, Astrophys. J., 779, 72 (2013). [DOI], [ADS], [arXiv:1308.1546 [astro-ph.HE]]. |
* | 50 | Dominik, M. et al., “Double Compact Objects III: Gravitational Wave Detection Rates”, Astrophys. J., 806, 263 (2015). [DOI], [ADS], [arXiv:1405.7016 [astro-ph.HE]]. |
* | 51 | Essick, R., Vitale, S., Katsavounidis, E., Vedovato, G. and Klimenko, S., “Localization of short duration gravitational-wave transients with the early advanced LIGO and Virgo detectors”, Astrophys. J., 800, 81 (2015). [DOI], [ADS], [arXiv:1409.2435 [astro-ph.HE]]. |
* | 52 | Evans, P. A. et al., “Optimisation of the Swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015–16”, Mon. Not. R. Astron. Soc., 455, 1522–1537 (2016). [DOI], [ADS], [arXiv:1506.01624 [astro-ph.HE]]. |
* | 53 | Evans, P. A. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Swift Follow-up Observations of Candidate Gravitational-Wave Transient Events”, Astrophys. J. Suppl. Ser., 203, 28 (2012). [DOI], [ADS], [arXiv:1205.1124 [astro-ph.HE]]. |
* | 54 | Faber, J. A. and Rasio, F. A., “Binary Neutron Star Mergers”, Living Rev. Relativity, 15, lrr-2012-8 (2012). [DOI], [ADS], [arXiv:1204.3858 [gr-qc]]. |
* | 55 | Fairhurst, S., “Triangulation of gravitational wave sources with a network of detectors”, New J. Phys., 11, 123006 (2009). [DOI], [ADS], [arXiv:0908.2356 [gr-qc]]. |
* | 56 | Fairhurst, S., “Source localization with an advanced gravitational wave detector network”, Class. Quantum Grav., 28, 105021 (2011). [DOI], [ADS], [arXiv:1010.6192 [gr-qc]]. |
* | 57 | Farr, B. et al., “Parameter estimation on gravitational waves from neutron-star binaries with spinning components”, arXiv, e-print, (2015). [ADS], [arXiv:1508.05336 [astro-ph.HE]]. |
* | 58 | Finn, L. S. and Chernoff, D. F., “Observing binary inspiral in gravitational radiation: One interferometer”, Phys. Rev. D, 47, 2198–2219 (1993). [DOI], [ADS], [arXiv:gr-qc/9301003]. |
* | 59 | Gehrels, N., Cannizzo, J. K., Kanner, J., Kasliwal, M. M., Nissanke, S. and Singer, L. P., “Galaxy Strategy for LIGO–Virgo Gravitational Wave Counterpart Searches”, arXiv, e-print, (2015). [ADS], [arXiv:1508.03608 [astro-ph.HE]]. |
* | 60 | Grover, K., Fairhurst, S., Farr, B. F., Mandel, I., Rodriguez, C., Sidery, T. and Vecchio, A., “Comparison of Gravitational Wave Detector Network Sky Localization Approximations”, Phys. Rev. D, 89, 042004 (2014). [DOI], [ADS], [arXiv:1310.7454 [gr-qc]]. |
* | 61 | Harry, G. M. (LIGO Scientific Collaboration), “Advanced LIGO: the next generation of gravitational wave detectors”, Class. Quantum Grav., 27, 084006 (2010). [DOI], [ADS]. |
* | 62 | Harry, I. W., Nitz, A. H., Brown, D. A., Lundgren, A. P., Ochsner, E. and Keppel, D., “Investigating the effect of precession on searches for neutron-star–black-hole binaries with Advanced LIGO”, Phys. Rev. D, 89, 024010 (2014). [DOI], [ADS], [arXiv:1307.3562 [gr-qc]]. |
* | 63 | Hild, S. et al. (LIGO Scientific Collaboration), LIGO 3 Strawman Design, T. Red,
LIGO-T1200046-v1, (LIGO, Pasadena, C.A, 2012). URL (accessed 1 August 2014): https://dcc.ligo.org/LIGO-T1200046/public. |
* | 64 | Iyer, B., Souradeep, T., Unnikrishnan, C. S., Dhurandhar, S., Raja, S. and Sengupta, A.
(IndIGO Consortium), LIGO-India, M1100296-v2, (IndIGO, India, 2011). URL (accessed 27
August 2015): https://dcc.ligo.org/LIGO-M1100296/public. |
* | 65 | Jaranowski, P. and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case”, Living Rev. Relativity, 15, lrr-2012-4 (2012). [DOI], [ADS], [arXiv:0711.1115 [gr-qc]]. |
* | 66 | Kanner, J. B. et al., “Leveraging waveform complexity for confident detection of gravitational waves”, Phys. Rev. D, 93, 022002 (2016). [DOI], [ADS], [arXiv:1509.06423 [astro-ph.IM]]. |
* | 67 | Kasliwal, Mansi M. and Nissanke, Samaya, “On Discovering Electromagnetic Emission from Neutron Star Mergers: The Early Years of Two Gravitational Wave Detectors”, Astrophys. J., 789, L5 (2014). [DOI], [ADS], [arXiv:1309.1554 [astro-ph.HE]]. |
* | 68 | Khan, S., Husa, S., Hannam, M., Ohme, F., Pürrer, M., Forteza, X. J. and Bohé, A., “Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era”, Phys. Rev. D, 93, 044007 (2016). [DOI], [ADS], [arXiv:1508.07253 [gr-qc]]. |
* | 69 | Kim, C., Perera, B. B. P. and McLaughlin, M. A., “Implications of PSR J0737-3039B for the Galactic NS–NS Binary Merger Rate”, Mon. Not. R. Astron. Soc., 448, 928–938 (2015). [DOI], [ADS], [arXiv:1308.4676 [astro-ph.SR]]. |
* | 70 | Klimenko, S., Mohanty, S., Rakhmanov, M. and Mitselmakher, G., “Constraint likelihood analysis for a network of gravitational wave detectors”, Phys. Rev. D, 72, 122002 (2005). [DOI], [ADS], [arXiv:gr-qc/0508068 [gr-qc]]. |
* | 71 | Klimenko, S.., Yakushin, I.., Mercer, A.. and Mitselmakher, G., “Coherent method for detection of gravitational wave bursts”, Class. Quantum Grav., 25, 114029 (2008). [DOI], [ADS], [arXiv:0802.3232 [gr-qc]]. |
* | 72 | Klimenko, S. et al., “Localization of gravitational wave sources with networks of advanced detectors”, Phys. Rev. D, 83, 102001 (2011). [DOI], [ADS], [arXiv:1101.5408 [astro-ph.IM]]. |
* | 73 | Klimenko, S. et al., “Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors”, arXiv, e-print, (2015). [ADS], [arXiv:1511.05999 [gr-qc]]. |
* | 74 | Lindblom, L., Owen, B. J. and Brown, D. A., “Model waveform accuracy standards for gravitational wave data analysis”, Phys. Rev. D, 78, 124020 (2008). [DOI], [ADS], [arXiv:0809.3844 [gr-qc]]. |
* | 75 | Littenberg, T. B. and Cornish, N. J., “Bayesian inference for spectral estimation of gravitational wave detector noise”, Phys. Rev. D, 91, 084034 (2015). [DOI], [ADS], [arXiv:1410.3852 [gr-qc]]. |
* | 76 | Lück, H. et al., “The upgrade of GEO 600”, J. Phys.: Conf. Ser., 228, 012012 (2010). [DOI], [ADS], [arXiv:1004.0339 [gr-qc]]. |
* | 77 | Mandel, I. and O’Shaughnessy, R., “Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors”, Class. Quantum Grav., 27, 114007 (2010). [DOI], [ADS], [arXiv:0912.1074 [astro-ph.HE]]. Proceedings, 3rd Annual Meeting, NRDA 2009, Potsdam, Germany, July 6 – 9, 2009. |
* | 78 | Miller, J., Barsotti, L., Vitale, S., Fritschel, P., Evans, M. and Sigg, D., “Prospects for doubling the range of Advanced LIGO”, Phys. Rev. D, 91, 062005 (2015). [DOI], [ADS], [arXiv:1410.5882 [gr-qc]]. |
* | 79 | Nissanke, S., Kasliwal, M. and Georgieva, A., “Identifying Elusive Electromagnetic Counterparts to Gravitational Wave Mergers: An End-to-end Simulation”, Astrophys. J., 767, 124 (2013). [DOI], [ADS], [arXiv:1210.6362 [astro-ph.HE]]. |
* | 80 | Nissanke, S., Sievers, J., Dalal, N. and Holz, D. E., “Localizing Compact Binary Inspirals on the Sky Using Ground-based Gravitational Wave Interferometers”, Astrophys. J., 739, 99 (2011). [DOI], [ADS], [arXiv:1105.3184 [astro-ph.CO]]. |
* | 81 | Nitz, A. H., Lundgren, A., Brown, D. A., Ochsner, E., Keppel, D. and Harry, I. W., “Accuracy of gravitational waveform models for observing neutron-star–black-hole binaries in Advanced LIGO”, Phys. Rev. D, 88, 124039 (2013). [DOI], [ADS], [arXiv:1307.1757 [gr-qc]]. |
* | 82 | Ott, C. D., “The gravitational-wave signature of core-collapse supernovae”, Class. Quantum Grav., 26, 063001 (2009). [DOI], [ADS], [arXiv:0809.0695 [astro-ph]]. |
* | 83 | Ott, C. D. et al., “Dynamics and gravitational wave signature of collapsar formation”, Phys. Rev. Lett., 106, 161103 (2011). [DOI], [ADS], [arXiv:1012.1853 [astro-ph.HE]]. |
* | 84 | Owen, B. J. and Sathyaprakash, B. S., “Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement”, Phys. Rev. D, 60, 022002 (1999). [DOI], [ADS], [arXiv:gr-qc/9808076 [gr-qc]]. |
* | 85 | Pan, Y., Buonanno, A., Taracchini, A., Kidder, L. E., Mroué, A. H., Pfeiffer, H. P., Scheel, M. A. and Szilágyi, B., “Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism”, Phys. Rev. D, 89, 084006 (2014). [DOI], [ADS], [arXiv:1307.6232 [gr-qc]]. |
* | 86 | Pankow, C., Klimenko, S., Mitselmakher, G., Yakushin, I., Vedovato, G., Drago, M., Mercer, R. A. and Ajith, P., “A Burst search for gravitational waves from binary black holes”, Class. Quantum Grav., 26, 204004 (2009). [DOI], [ADS], [arXiv:0905.3120 [gr-qc]]. Proceedings, 13th Gravitational Wave Data Analysis Workshop on Bridging gravitational wave astronomy and observational astrophysics (GWDAW13). |
* | 87 | Pitkin, M., Reid, S., Rowan, S. and Hough, J., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 14, lrr-2011-5 (2011). [DOI], [ADS], [arXiv:1102.3355 [astro-ph.IM]]. |
* | 88 | Privitera, S. et al., “Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data”, Phys. Rev. D, 89, 024003 (2014). [DOI], [ADS], [arXiv:1310.5633 [gr-qc]]. |
* | 89 | Pürrer, M., “Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries”, Class. Quantum Grav., 31, 195010 (2014). [DOI], [ADS], [arXiv:1402.4146 [gr-qc]]. |
* | 90 | Read, J. S. et al., “Matter effects on binary neutron star waveforms”, Phys. Rev. D, 88, 044042 (2013). [DOI], [ADS], [arXiv:1306.4065 [gr-qc]]. |
* | 91 | Rodriguez, C. L., Farr, B., Raymond, V., Farr, W. M., Littenberg, T. B., Fazi, D. and Kalogera, V., “Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network”, Astrophys. J., 784, 119 (2014). [DOI], [ADS], [arXiv:1309.3273 [astro-ph.HE]]. |
* | 92 | Rodriguez, C. L., Morscher, M., Pattabiraman, B., Chatterjee, S., Haster, C.-J. and Rasio, F. A., “Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO”, Phys. Rev. Lett., 115, 051101 (2015). [DOI], [ADS], [arXiv:1505.00792 [astro-ph.HE]]. |
* | 93 | Sathyaprakash, B. et al., “Scientific Objectives of Einstein Telescope”, Class. Quantum Grav., 29, 124013 (2012). [DOI], [ADS], [arXiv:1206.0331 [gr-qc]]. |
* | 94 | Sathyaprakash, B. S. and Schutz, B. F., “Physics, Astrophysics and Cosmology with Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2 (2009). [DOI], [ADS], [arXiv:0903.0338 [gr-qc]]. |
* | 95 | Schmidt, P., Ohme, F. and Hannam, M., “Towards models of gravitational waveforms from generic binaries II: Modelling precession effects with a single effective precession parameter”, Phys. Rev. D, 91, 024043 (2015). [DOI], [ADS], [arXiv:1408.1810 [gr-qc]]. |
* | 96 | Schutz, B. F., “Networks of gravitational wave detectors and three figures of merit”, Class. Quantum Grav., 28, 125023 (2011). [DOI], [ADS], [arXiv:1102.5421 [astro-ph.IM]]. |
* | 97 | Sidery, T. et al., “Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison”, Phys. Rev. D, 89, 084060 (2014). [DOI], [ADS], [arXiv:1312.6013 [astro-ph.IM]]. |
* | 98 | Singer, L. P. and Price, L. R., “Rapid Bayesian position reconstruction for gravitational-wave transients”, Phys. Rev. D, 93, 024013 (2016). [DOI], [ADS], [arXiv:1508.03634 [gr-qc]]. |
* | 99 | Singer, L. P. et al., “The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo”, Astrophys. J., 795, 105 (2014). [DOI], [ADS], [arXiv:1404.5623 [astro-ph.HE]]. |
* | 100 | Somiya, K. (KAGRA Collaboration), “Detector configuration of KAGRA – the Japanese cryogenic gravitational-wave detector”, Class. Quantum Grav., 29, 124007 (2012). [DOI], [ADS], [arXiv:1111.7185 [gr-qc]]. |
* | 101 | Sutton, P. J., “A Rule of Thumb for the Detectability of Gravitational-Wave Bursts”, arXiv, e-print, (2013). [ADS], [arXiv:1304.0210 [gr-qc]]. |
* | 102 | Sutton, P. J. et al., “X-Pipeline: An Analysis package for autonomous gravitational-wave burst searches”, New J. Phys., 12, 053034 (2010). [DOI], [ADS], [arXiv:0908.3665 [gr-qc]]. |
* | 103 | Taracchini, A. et al., “Effective-one-body model for black-hole binaries with generic mass ratios and spins”, Phys. Rev. D, 89, 061502 (2014). [DOI], [ADS], [arXiv:1311.2544 [gr-qc]]. |
* | 104 | Thrane, E. and Coughlin, M., “Searching for gravitational-wave transients with a qualitative signal model: seedless clustering strategies”, Phys. Rev. D, 88, 083010 (2013). [DOI], [ADS], [arXiv:1308.5292 [astro-ph.IM]]. |
* | 105 | Thrane, E., Mandic, V. and Christensen, N., “Detecting very long-lived gravitational-wave transients lasting hours to weeks”, Phys. Rev. D, 91, 104021 (2015). [DOI], [ADS], [arXiv:1501.06648 [astro-ph.IM]]. |
* | 106 | Thrane, E. et al., “Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers”, Phys. Rev. D, 83, 083004 (2011). [DOI], [ADS], [arXiv:1012.2150 [astro-ph.IM]]. |
* | 107 | Usman, S. A. et al., “An improved pipeline to search for gravitational waves from compact binary coalescence”, arXiv, e-print, (2015). [ADS], [arXiv:1508.02357 [gr-qc]]. |
* | 108 | Vallisneri, M., Kanner, J., Williams, R., Weinstein, A. and Stephens, B., “The LIGO Open Science Center”, J. Phys.: Conf. Ser., 610, 012021 (2015). [DOI], [ADS], [arXiv:1410.4839 [gr-qc]]. Proceedings, 10th International LISA Symposium. |
* | 109 | Veitch, J. et al., “Estimating parameters of coalescing compact binaries with proposed advanced detector networks”, Phys. Rev. D, 85, 104045 (2012). [DOI], [ADS], [arXiv:1201.1195 [astro-ph.HE]]. |
* | 110 | Veitch, J. et al., “Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library”, Phys. Rev. D, 91, 042003 (2015). [DOI], [ADS], [arXiv:1409.7215 [gr-qc]]. |
* | 111 | Vitale, S., Del Pozzo, W., Li, T. G. F., Van Den Broeck, C., Mandel, I., Aylott, B. and Veitch, J., “Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era”, Phys. Rev. D, 85, 064034 (2012). [DOI], [ADS], [arXiv:1111.3044 [gr-qc]]. |
* | 112 | Vitale, S. and Zanolin, M., “Application of asymptotic expansions for maximum likelihood estimators’ errors to gravitational waves from inspiraling binary systems: The network case”, Phys. Rev. D, 84, 104020 (2011). [DOI], [ADS], [arXiv:1108.2410 [gr-qc]]. |
* | 113 | Yakunin, K. N. et al., “Gravitational waves from core collapse supernovae”, Class. Quantum Grav., 27, 194005 (2002). [DOI], [ADS], [arXiv:1005.0779 [gr-qc]]. |