sidebar

References

1 Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “The characterization of Virgo data and its impact on gravitational-wave searches”, Class. Quantum Grav., 29, 155002 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1203.5613 [gr-qc]].
2 Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Open call for partnership for the EM identification and follow-up of GW candidate events, LIGO M1300550-v3 / VIR-0494E-13, (LIGO, Pasadena, CA, 2013). URL (accessed 25 September 2015):
External Linkhttps://dcc.ligo.org/LIGO-M1300550-v8/public.
3 Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network”, Phys. Rev. D, 88, 062001 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.1775 [gr-qc]].
4 Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1304.0670v1 [gr-qc]].
5 Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “First Searches for Optical Counterparts to Gravitational-wave Candidate Events”, Astrophys. J. Suppl. Ser., 211, 7 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1310.2314 [astro-ph.IM]].
6 Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO600, LIGO, and Virgo detectors”, Phys. Rev. D, 89, 122004 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1405.1053 [astro-ph.HE]].
7 Aasi, J. et al. (LIGO Scientific Collaboration, Virgo Collaboration and IPN Collaboration), “Search for gravitational waves associated with γ-ray bursts detected by the Interplanetary Network”, Phys. Rev. Lett., 113, 011102 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1403.6639 [astro-ph.HE]].
8 Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), The LSC–Virgo White Paper on Gravitational Wave Searches and Astrophysics (2014–2015 edition), LIGO-T1400054-v6, (LIGO, Pasadena, CA, 2014). URL (accessed 23 June 2014):
External Linkhttps://dcc.ligo.org/LIGO-T1400054/public.
9 Aasi, J. et al. (LIGO Scientific Collaboration), “Advanced LIGO”, Class. Quantum Grav., 32, 074001 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1411.4547 [gr-qc]].
10 Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Characterization of the LIGO detectors during their sixth science run”, Class. Quantum Grav., 32, 115012 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1410.7764 [gr-qc]].
11 Aasi, J. et al. (LIGO Scientific Collaboration), Instrument Science White Paper, LIGO-T1400316-v4, (LIGO, Pasadena, CA, 2015). URL (accessed 28 August 2015):
External Linkhttps://dcc.ligo.org/LIGO-T1400316/public.
12 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run”, Phys. Rev. D, 81, 102001 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1002.1036 [gr-qc]].
13 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors”, Class. Quantum Grav., 27, 173001 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1003.2480 [astro-ph.HE]].
14 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “All-sky search for gravitational-wave bursts in the second joint LIGO–Virgo run”, Phys. Rev. D, 85, 122007 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.2788 [gr-qc]].
15 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts”, Astron. Astrophys., 541, A155 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1112.6005 [astro-ph.CO]].
16 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts”, Astron. Astrophys., 539, A124 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1109.3498 [astro-ph.IM]].
17 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), LSC and Virgo Policy on Releasing Gravitational Wave Triggers to the Public in the Advanced Detectors Era, LIGO M1200055-v2 / VIR-0173A-12, (LIGO, Pasadena, CA, 2012). URL (accessed 16 May 2013):
External Linkhttps://dcc.ligo.org/LIGO-M1200055-v2/public.
18 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for Gravitational Waves Associated with Gamma-Ray Bursts during LIGO Science Run 6 and Virgo Science Runs 2 and 3”, Astrophys. J., 760, 12 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.2216 [astro-ph.HE]].
19 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3”, Phys. Rev. D, 85, 082002 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.7314 [gr-qc]].
20 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Sensitivity Achieved by the LIGO and Virgo Gravitational Wave Detectors during LIGO’s Sixth and Virgo’s Second and Third Science Runs”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1203.2674 [gr-qc]].
21 Abbott, B. P. et al. (LIGO Scientific Collaboration), “LIGO: The Laser interferometer gravitational-wave observatory”, Rep. Prog. Phys., 72, 076901 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.3041 [gr-qc]].
22 Abbott, B. P. et al. (LIGO Scientific Collaboration), “Search for gravitational-wave bursts in the first year of the fifth LIGO science run”, Phys. Rev. D, 80, 102001 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0905.0020 [gr-qc]].
23 Accadia, T. et al. (Virgo Collaboration), Advanced Virgo Technical Design Report, VIR-0128A-12, (Virgo, Cascina, 2012). URL (accessed 16 May 2013):
External Linkhttps://tds.ego-gw.it/ql/?c=8940.
24 Acernese, F. et al. (Virgo Collaboration), Advanced Virgo Baseline Design, VIR-027A-09, (Virgo, Cascina, 2009). URL (accessed 16 May 2013):
External Linkhttps://tds.ego-gw.it/ql/?c=6589.
25 Acernese, F. et al. (Virgo Collaboration), “Advanced Virgo: a second-generation interferometric gravitational wave detector”, Class. Quantum Grav., 32, 024001 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1408.3978 [gr-qc]].
26 Adams, T. S., Meacher, D., Clark, J., Sutton, P. J., Jones, G. and Minot, A., “Gravitational-wave detection using multivariate analysis”, Phys. Rev. D, 88, 062006 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1305.5714 [gr-qc]].
27 Allen, B., “χ2 time-frequency discriminator for gravitational wave detection”, Phys. Rev. D, 71, 062001 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0405045 [gr-qc]].
28 Aso, Y., Michimura, Y., Somiya, K., Ando, M., Miyakawa, O., Sekiguchi, T., Tatsumi, D. and Yamamoto, H. (KAGRA Collaboration), “Interferometer design of the KAGRA gravitational wave detector”, Phys. Rev. D, 88, 043007 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1306.6747 [gr-qc]].
29 Babak, S. et al., “Searching for gravitational waves from binary coalescence”, Phys. Rev. D, 87, 024033 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.3491 [gr-qc]].
30 Barsotti, L. and Fritschel, P. (LIGO Scientific Collaboration), Early aLIGO Configurations: example scenarios toward design sensitivity, LIGO-T1200307-v4, (LIGO, Pasadena, CA, 2012). URL (accessed 23 June 2014):
External Linkhttps://dcc.ligo.org/LIGO-T1200307/public.
31 Berry, C. P. L. et al., “Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era”, Astrophys. J., 804, 114 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1411.6934 [astro-ph.HE]].
32 Blackburn, L., Briggs, M. S., Camp, J., Christensen, N., Connaughton, V., Jenke, P., Remillard, R. A. and Veitch, J., “High-energy electromagnetic offline follow-up of LIGO-Virgo gravitational-wave binary coalescence candidate events”, Astrophys. J. Suppl. Ser., 217, 8 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1410.0929 [astro-ph.HE]].
33 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 17, lrr-2014-2 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1310.1528 [gr-qc]].
34 Brown, D. A., Harry, I., Lundgren, A. and Nitz, A. H., “Detecting binary neutron star systems with spin in advanced gravitational-wave detectors”, Phys. Rev. D, 86, 084017 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1207.6406 [gr-qc]].
35 Buonanno, A., Iyer, B., Ochsner, E., Pan, Y. and Sathyaprakash, B. S., “Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors”, Phys. Rev. D, 80, 084043 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.0700 [gr-qc]].
36 Canizares, P., Field, S. E., Gair, J., Raymond, V., Smith, R. and Tiglio, M., “Accelerated gravitational-wave parameter estimation with reduced order modeling”, Phys. Rev. Lett., 114, 071104 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1404.6284 [gr-qc]].
37 Canizares, P., Field, S. E., Gair, J. R. and Tiglio, M., “Gravitational wave parameter estimation with compressed likelihood evaluations”, Phys. Rev. D, 87, 124005 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.0462 [gr-qc]].
38 Cannon, K., Hanna, C. and Peoples, J., “Likelihood-Ratio Ranking Statistic for Compact Binary Coalescence Candidates with Rate Estimation”, arXiv, e-print, (2015). [External LinkADS], [External LinkarXiv:1504.04632 [astro-ph.IM]].
39 Cannon, K. et al., “Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence”, Astrophys. J., 748, 136 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.2665 [astro-ph.IM]].
40 Chassande-Mottin, E., Miele, M., Mohapatra, S. and Cadonati, L., “Detection of gravitational-wave bursts with chirplet-like template families”, Class. Quantum Grav., 27, 194017 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.2876 [gr-qc]]. Proceedings, 14th Workshop on Gravitational wave data analysis (GWDAW-14).
41 Chatterji, S., Lazzarini, A., Stein, L., Sutton, P. J., Searle, A. and Tinto, M., “Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise”, Phys. Rev. D, 74, 082005 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0605002].
42 Chen, H.-Y. and Holz, D. E., “Facilitating follow-up of LIGO–Virgo events using rapid sky localization”, arXiv, e-print, (2015). [External LinkADS], [External LinkarXiv:1509.00055 [astro-ph.IM]].
43 Cornish, N. J. and Littenberg, T. B., “BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches”, Class. Quantum Grav., 32, 135012 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1410.3835 [gr-qc]].
44 Cutler, C. and Flanagan, É. É., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?”, Phys. Rev. D, 49, 2658–2697 (1994). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9402014 [gr-qc]].
45 Dal Canton, T., Lundgren, A. P. and Nielsen, A. B., “Impact of precession on aligned-spin searches for neutron-star–black-hole binaries”, Phys. Rev. D, 91, 062010 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1411.6815 [gr-qc]].
46 Dal Canton, T. et al., “Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors”, Phys. Rev. D, 90, 082004 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1405.6731 [gr-qc]].
47 de Mink, S. E. and Belczynski, K., “Merger rates of double neutron stars and stellar origin black holes: The Impact of Initial Conditions on Binary Evolution Predictions”, Astrophys. J., 814, 58 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1506.03573 [astro-ph.HE]].
48 Dimmelmeier, H., Ott, C. D., Marek, A. and Janka, H.-T., “Gravitational wave burst signal from the core collapse of rotating stars”, Phys. Rev. D, 78, 064056 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.4953 [astro-ph]].
49 Dominik, M., Belczynski, K., Fryer, C., Holz, D. E., Berti, E., Bulik, T., Mandel, I. and O’Shaughnessy, R., “Double Compact Objects II: Cosmological Merger Rates”, Astrophys. J., 779, 72 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1308.1546 [astro-ph.HE]].
50 Dominik, M. et al., “Double Compact Objects III: Gravitational Wave Detection Rates”, Astrophys. J., 806, 263 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1405.7016 [astro-ph.HE]].
51 Essick, R., Vitale, S., Katsavounidis, E., Vedovato, G. and Klimenko, S., “Localization of short duration gravitational-wave transients with the early advanced LIGO and Virgo detectors”, Astrophys. J., 800, 81 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1409.2435 [astro-ph.HE]].
52 Evans, P. A. et al., “Optimisation of the Swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015–16”, Mon. Not. R. Astron. Soc., 455, 1522–1537 (2016). [External LinkDOI], [External LinkADS], [External LinkarXiv:1506.01624 [astro-ph.HE]].
53 Evans, P. A. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Swift Follow-up Observations of Candidate Gravitational-Wave Transient Events”, Astrophys. J. Suppl. Ser., 203, 28 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.1124 [astro-ph.HE]].
54 Faber, J. A. and Rasio, F. A., “Binary Neutron Star Mergers”, Living Rev. Relativity, 15, lrr-2012-8 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.3858 [gr-qc]].
55 Fairhurst, S., “Triangulation of gravitational wave sources with a network of detectors”, New J. Phys., 11, 123006 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0908.2356 [gr-qc]].
56 Fairhurst, S., “Source localization with an advanced gravitational wave detector network”, Class. Quantum Grav., 28, 105021 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.6192 [gr-qc]].
57 Farr, B. et al., “Parameter estimation on gravitational waves from neutron-star binaries with spinning components”, arXiv, e-print, (2015). [External LinkADS], [External LinkarXiv:1508.05336 [astro-ph.HE]].
58 Finn, L. S. and Chernoff, D. F., “Observing binary inspiral in gravitational radiation: One interferometer”, Phys. Rev. D, 47, 2198–2219 (1993). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9301003].
59 Gehrels, N., Cannizzo, J. K., Kanner, J., Kasliwal, M. M., Nissanke, S. and Singer, L. P., “Galaxy Strategy for LIGO–Virgo Gravitational Wave Counterpart Searches”, arXiv, e-print, (2015). [External LinkADS], [External LinkarXiv:1508.03608 [astro-ph.HE]].
60 Grover, K., Fairhurst, S., Farr, B. F., Mandel, I., Rodriguez, C., Sidery, T. and Vecchio, A., “Comparison of Gravitational Wave Detector Network Sky Localization Approximations”, Phys. Rev. D, 89, 042004 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1310.7454 [gr-qc]].
61 Harry, G. M. (LIGO Scientific Collaboration), “Advanced LIGO: the next generation of gravitational wave detectors”, Class. Quantum Grav., 27, 084006 (2010). [External LinkDOI], [External LinkADS].
62 Harry, I. W., Nitz, A. H., Brown, D. A., Lundgren, A. P., Ochsner, E. and Keppel, D., “Investigating the effect of precession on searches for neutron-star–black-hole binaries with Advanced LIGO”, Phys. Rev. D, 89, 024010 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1307.3562 [gr-qc]].
63 Hild, S. et al. (LIGO Scientific Collaboration), LIGO 3 Strawman Design, T. Red, LIGO-T1200046-v1, (LIGO, Pasadena, C.A, 2012). URL (accessed 1 August 2014):
External Linkhttps://dcc.ligo.org/LIGO-T1200046/public.
64 Iyer, B., Souradeep, T., Unnikrishnan, C. S., Dhurandhar, S., Raja, S. and Sengupta, A. (IndIGO Consortium), LIGO-India, M1100296-v2, (IndIGO, India, 2011). URL (accessed 27 August 2015):
External Linkhttps://dcc.ligo.org/LIGO-M1100296/public.
65 Jaranowski, P. and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case”, Living Rev. Relativity, 15, lrr-2012-4 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.1115 [gr-qc]].
66 Kanner, J. B. et al., “Leveraging waveform complexity for confident detection of gravitational waves”, Phys. Rev. D, 93, 022002 (2016). [External LinkDOI], [External LinkADS], [External LinkarXiv:1509.06423 [astro-ph.IM]].
67 Kasliwal, Mansi M. and Nissanke, Samaya, “On Discovering Electromagnetic Emission from Neutron Star Mergers: The Early Years of Two Gravitational Wave Detectors”, Astrophys. J., 789, L5 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1309.1554 [astro-ph.HE]].
68 Khan, S., Husa, S., Hannam, M., Ohme, F., Pürrer, M., Forteza, X. J. and Bohé, A., “Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era”, Phys. Rev. D, 93, 044007 (2016). [External LinkDOI], [External LinkADS], [External LinkarXiv:1508.07253 [gr-qc]].
69 Kim, C., Perera, B. B. P. and McLaughlin, M. A., “Implications of PSR J0737-3039B for the Galactic NS–NS Binary Merger Rate”, Mon. Not. R. Astron. Soc., 448, 928–938 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1308.4676 [astro-ph.SR]].
70 Klimenko, S., Mohanty, S., Rakhmanov, M. and Mitselmakher, G., “Constraint likelihood analysis for a network of gravitational wave detectors”, Phys. Rev. D, 72, 122002 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0508068 [gr-qc]].
71 Klimenko, S.., Yakushin, I.., Mercer, A.. and Mitselmakher, G., “Coherent method for detection of gravitational wave bursts”, Class. Quantum Grav., 25, 114029 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0802.3232 [gr-qc]].
72 Klimenko, S. et al., “Localization of gravitational wave sources with networks of advanced detectors”, Phys. Rev. D, 83, 102001 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1101.5408 [astro-ph.IM]].
73 Klimenko, S. et al., “Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors”, arXiv, e-print, (2015). [External LinkADS], [External LinkarXiv:1511.05999 [gr-qc]].
74 Lindblom, L., Owen, B. J. and Brown, D. A., “Model waveform accuracy standards for gravitational wave data analysis”, Phys. Rev. D, 78, 124020 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.3844 [gr-qc]].
75 Littenberg, T. B. and Cornish, N. J., “Bayesian inference for spectral estimation of gravitational wave detector noise”, Phys. Rev. D, 91, 084034 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1410.3852 [gr-qc]].
76 Lück, H. et al., “The upgrade of GEO 600”, J. Phys.: Conf. Ser., 228, 012012 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.0339 [gr-qc]].
77 Mandel, I. and O’Shaughnessy, R., “Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors”, Class. Quantum Grav., 27, 114007 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.1074 [astro-ph.HE]]. Proceedings, 3rd Annual Meeting, NRDA 2009, Potsdam, Germany, July 6 – 9, 2009.
78 Miller, J., Barsotti, L., Vitale, S., Fritschel, P., Evans, M. and Sigg, D., “Prospects for doubling the range of Advanced LIGO”, Phys. Rev. D, 91, 062005 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1410.5882 [gr-qc]].
79 Nissanke, S., Kasliwal, M. and Georgieva, A., “Identifying Elusive Electromagnetic Counterparts to Gravitational Wave Mergers: An End-to-end Simulation”, Astrophys. J., 767, 124 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1210.6362 [astro-ph.HE]].
80 Nissanke, S., Sievers, J., Dalal, N. and Holz, D. E., “Localizing Compact Binary Inspirals on the Sky Using Ground-based Gravitational Wave Interferometers”, Astrophys. J., 739, 99 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.3184 [astro-ph.CO]].
81 Nitz, A. H., Lundgren, A., Brown, D. A., Ochsner, E., Keppel, D. and Harry, I. W., “Accuracy of gravitational waveform models for observing neutron-star–black-hole binaries in Advanced LIGO”, Phys. Rev. D, 88, 124039 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1307.1757 [gr-qc]].
82 Ott, C. D., “The gravitational-wave signature of core-collapse supernovae”, Class. Quantum Grav., 26, 063001 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.0695 [astro-ph]].
83 Ott, C. D. et al., “Dynamics and gravitational wave signature of collapsar formation”, Phys. Rev. Lett., 106, 161103 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1012.1853 [astro-ph.HE]].
84 Owen, B. J. and Sathyaprakash, B. S., “Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement”, Phys. Rev. D, 60, 022002 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9808076 [gr-qc]].
85 Pan, Y., Buonanno, A., Taracchini, A., Kidder, L. E., Mroué, A. H., Pfeiffer, H. P., Scheel, M. A. and Szilágyi, B., “Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism”, Phys. Rev. D, 89, 084006 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1307.6232 [gr-qc]].
86 Pankow, C., Klimenko, S., Mitselmakher, G., Yakushin, I., Vedovato, G., Drago, M., Mercer, R. A. and Ajith, P., “A Burst search for gravitational waves from binary black holes”, Class. Quantum Grav., 26, 204004 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0905.3120 [gr-qc]]. Proceedings, 13th Gravitational Wave Data Analysis Workshop on Bridging gravitational wave astronomy and observational astrophysics (GWDAW13).
87 Pitkin, M., Reid, S., Rowan, S. and Hough, J., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 14, lrr-2011-5 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.3355 [astro-ph.IM]].
88 Privitera, S. et al., “Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data”, Phys. Rev. D, 89, 024003 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1310.5633 [gr-qc]].
89 Pürrer, M., “Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries”, Class. Quantum Grav., 31, 195010 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1402.4146 [gr-qc]].
90 Read, J. S. et al., “Matter effects on binary neutron star waveforms”, Phys. Rev. D, 88, 044042 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1306.4065 [gr-qc]].
91 Rodriguez, C. L., Farr, B., Raymond, V., Farr, W. M., Littenberg, T. B., Fazi, D. and Kalogera, V., “Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network”, Astrophys. J., 784, 119 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1309.3273 [astro-ph.HE]].
92 Rodriguez, C. L., Morscher, M., Pattabiraman, B., Chatterjee, S., Haster, C.-J. and Rasio, F. A., “Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO”, Phys. Rev. Lett., 115, 051101 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1505.00792 [astro-ph.HE]].
93 Sathyaprakash, B. et al., “Scientific Objectives of Einstein Telescope”, Class. Quantum Grav., 29, 124013 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1206.0331 [gr-qc]].
94 Sathyaprakash, B. S. and Schutz, B. F., “Physics, Astrophysics and Cosmology with Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.0338 [gr-qc]].
95 Schmidt, P., Ohme, F. and Hannam, M., “Towards models of gravitational waveforms from generic binaries II: Modelling precession effects with a single effective precession parameter”, Phys. Rev. D, 91, 024043 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1408.1810 [gr-qc]].
96 Schutz, B. F., “Networks of gravitational wave detectors and three figures of merit”, Class. Quantum Grav., 28, 125023 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.5421 [astro-ph.IM]].
97 Sidery, T. et al., “Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison”, Phys. Rev. D, 89, 084060 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1312.6013 [astro-ph.IM]].
98 Singer, L. P. and Price, L. R., “Rapid Bayesian position reconstruction for gravitational-wave transients”, Phys. Rev. D, 93, 024013 (2016). [External LinkDOI], [External LinkADS], [External LinkarXiv:1508.03634 [gr-qc]].
99 Singer, L. P. et al., “The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo”, Astrophys. J., 795, 105 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1404.5623 [astro-ph.HE]].
100 Somiya, K. (KAGRA Collaboration), “Detector configuration of KAGRA – the Japanese cryogenic gravitational-wave detector”, Class. Quantum Grav., 29, 124007 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.7185 [gr-qc]].
101 Sutton, P. J., “A Rule of Thumb for the Detectability of Gravitational-Wave Bursts”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1304.0210 [gr-qc]].
102 Sutton, P. J. et al., “X-Pipeline: An Analysis package for autonomous gravitational-wave burst searches”, New J. Phys., 12, 053034 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0908.3665 [gr-qc]].
103 Taracchini, A. et al., “Effective-one-body model for black-hole binaries with generic mass ratios and spins”, Phys. Rev. D, 89, 061502 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1311.2544 [gr-qc]].
104 Thrane, E. and Coughlin, M., “Searching for gravitational-wave transients with a qualitative signal model: seedless clustering strategies”, Phys. Rev. D, 88, 083010 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1308.5292 [astro-ph.IM]].
105 Thrane, E., Mandic, V. and Christensen, N., “Detecting very long-lived gravitational-wave transients lasting hours to weeks”, Phys. Rev. D, 91, 104021 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1501.06648 [astro-ph.IM]].
106 Thrane, E. et al., “Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers”, Phys. Rev. D, 83, 083004 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1012.2150 [astro-ph.IM]].
107 Usman, S. A. et al., “An improved pipeline to search for gravitational waves from compact binary coalescence”, arXiv, e-print, (2015). [External LinkADS], [External LinkarXiv:1508.02357 [gr-qc]].
108 Vallisneri, M., Kanner, J., Williams, R., Weinstein, A. and Stephens, B., “The LIGO Open Science Center”, J. Phys.: Conf. Ser., 610, 012021 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1410.4839 [gr-qc]]. Proceedings, 10th International LISA Symposium.
109 Veitch, J. et al., “Estimating parameters of coalescing compact binaries with proposed advanced detector networks”, Phys. Rev. D, 85, 104045 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.1195 [astro-ph.HE]].
110 Veitch, J. et al., “Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library”, Phys. Rev. D, 91, 042003 (2015). [External LinkDOI], [External LinkADS], [External LinkarXiv:1409.7215 [gr-qc]].
111 Vitale, S., Del Pozzo, W., Li, T. G. F., Van Den Broeck, C., Mandel, I., Aylott, B. and Veitch, J., “Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era”, Phys. Rev. D, 85, 064034 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.3044 [gr-qc]].
112 Vitale, S. and Zanolin, M., “Application of asymptotic expansions for maximum likelihood estimators’ errors to gravitational waves from inspiraling binary systems: The network case”, Phys. Rev. D, 84, 104020 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.2410 [gr-qc]].
113 Yakunin, K. N. et al., “Gravitational waves from core collapse supernovae”, Class. Quantum Grav., 27, 194005 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.0779 [gr-qc]].