References
* | 1 | Abadie, J. et al. (LIGO Scientific Collaboration), “Calibration of the LIGO Gravitational Wave
Detectors in the Fifth Science Run”, Nucl. Instrum. Methods A, 624, 223–240 (2010). [![]() ![]() |
* | 2 | Abbott, B. et al. (LIGO Scientific Collaboration), “LIGO: The Laser Interferometer
Gravitational-Wave Observatory”, Rep. Prog. Phys., 72, 076901 (2009). [![]() ![]() |
* | 3 | Abramovici, A. et al., “LIGO: The Laser Interferometer Gravitational-Wave Observatory”,
Science, 256, 325–333 (1992). [![]() ![]() |
* | 4 | Accadia, T. et al. (Virgo Collaboration), “Calibration and sensitivity of the Virgo detector
during its second science run”, Class. Quantum Grav., 28, 025005 (2011). [![]() ![]() |
* | 5 | Acernese, F. et al. (VIRGO Collaboration), “The Virgo Detector”, in Tricomi, A., Albergo, S.
and Chiorboli, M., eds., IFAE 2005: XVII Incontri de Fisica delle Alte Energie; 17th Italian
Meeting on High Energy, Catania, Italy, 30 March – 2 April 2005, AIP Conference Proceedings,
794, pp. 307–310, (American Institute of Physics, Melville, NY, 2005). [![]() |
* | 6 | Acernese, F. et al. (Virgo Collaboration), “Status of Virgo detector”, Class. Quantum Grav.,
24, S381–S388 (2007). [![]() ![]() |
* | 7 | Adelberger, E.G., Heckel, B.R., Hoedl, S.A., Hoyle, C.D., Kapner, D.J. and Upadhye, A.,
“Particle-Physics Implications of a Recent Test of the Gravitational Inverse-Square Law”, Phys.
Rev. Lett., 98, 131104 (2007). [![]() ![]() |
* | 8 | Adler, S.L., “Axial-Vector Vertex in Spinor Electrodynamics”, Phys. Rev., 177, 2426–2438
(1969). [![]() ![]() |
* | 9 | Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H. and Oz, Y., “Large N field theories,
string theory and gravity”, Phys. Rep., 323, 183–386 (2000). [![]() ![]() |
* | 10 | Akmal, A., Pandharipande, V.R. and Ravenhall, D.G., “The equation of state of nucleon
matter and neutron star structure”, Phys. Rev. C, 58, 1804–1828 (1998). [![]() ![]() ![]() |
* | 11 | Alexander, S., Finn, L.S. and Yunes, N., “Gravitational-wave probe of effective quantum
gravity”, Phys. Rev. D, 78, 066005 (2008). [![]() ![]() ![]() |
* | 12 | Alexander, S. and Gates Jr, S.J., “Can the string scale be related to the cosmic
baryon asymmetry?”, J. Cosmol. Astropart. Phys., 2006(06), 018 (2006). [![]() ![]() ![]() |
* | 13 | Alexander, S. and Martin, J., “Birefringent gravitational waves and the consistency check of
inflation”, Phys. Rev. D, 71, 063526 (2005). [![]() ![]() |
* | 14 | Alexander, S. and Yunes, N., “New Post-Newtonian Parameter to Test Chern-Simons Gravity”,
Phys. Rev. Lett., 99, 241101 (2007). [![]() ![]() ![]() |
* | 15 | Alexander, S. and Yunes, N., “Parametrized post-Newtonian expansion of Chern-Simons
gravity”, Phys. Rev. D, 75, 124022 (2007). [![]() ![]() ![]() |
* | 16 | Alexander, S. and Yunes, N., “Chern-Simons modified gravity as a torsion theory and its
interaction with fermions”, Phys. Rev. D, 77, 124040 (2008). [![]() ![]() ![]() |
* | 17 | Alexander, S. and Yunes, N., “Chern–Simons modified general relativity”, Phys. Rep., 480,
1–55 (2009). [![]() ![]() ![]() |
* | 18 | Ali-Haïmoud, Y., “Revisiting the double-binary-pulsar probe of nondynamical Chern-Simons
gravity”, Phys. Rev. D, 83, 124050 (2011). [![]() ![]() ![]() |
* | 19 | Ali-Haïmoud, Y. and Chen, Y., “Slowly-rotating stars and black holes in dynamical
Chern-Simons gravity”, Phys. Rev. D, 84, 124033 (2011). [![]() ![]() ![]() |
* | 20 | Alsing, J., Berti, E., Will, C.M. and Zaglauer, H., “Gravitational radiation from compact binary
systems in the massive Brans-Dicke theory of gravity”, Phys. Rev. D, 85, 064041 (2012). [![]() ![]() |
* | 21 | Alvarez-Gaumé, L. and Witten, E., “Gravitational anomalies”, Nucl. Phys. B, 234, 269–330
(1984). [![]() ![]() |
* | 22 | Alves, M.E.S. and Tinto, M., “Pulsar Timing Sensitivities to Gravitational Waves from
Relativistic Metric Theories of Gravity”, Phys. Rev. D, 83, 123529 (2011). [![]() ![]() ![]() |
* | 23 | Amaro-Seoane, P., Gair, J.R., Freitag, M., Miller, M.C., Mandel, I., Cutler, C.J. and
Babak, S., “Intermediate and extreme mass-ratio inspirals – astrophysics, science applications
and detection using LISA”, Class. Quantum Grav., 24, R113–R169 (2007). [![]() ![]() ![]() |
* | 24 | Amaro-Seoane, P. et al., “Low-frequency gravitational-wave science with eLISA/NGO”, Class.
Quantum Grav., 29, 124016 (2012). [![]() ![]() ![]() |
* | 25 | Amaro-Seoane, P. et al., “eLISA: Astrophysics and cosmology in the millihertz regime”, GW
Notes, 6, 4–110 (2013). [![]() ![]() ![]() |
* | 26 | Amelino-Camelia, G., “Testable scenario for relativity with minimum length”, Phys. Lett. B,
510, 255–263 (2001). [![]() ![]() ![]() |
* | 27 | Amelino-Camelia, G., “Doubly special relativity”, Nature, 418, 34–35 (2002). [![]() ![]() |
* | 28 | Amelino-Camelia, G., “Doubly-Special Relativity: Facts, Myths and Some Key Open Issues”,
Symmetry, 2, 230–271 (2010). [![]() ![]() |
* | 29 | Amendola, L., Charmousis, C. and Davis, S.C., “Solar System Constraints on Gauss-Bonnet
Mediated Dark Energy”, J. Cosmol. Astropart. Phys., 2007(10), 004 (2007). [![]() ![]() |
* | 30 | Anholm, M., Ballmer, S., Creighton, J.D.E., Price, L.R. and Siemens, X., “Optimal strategies
for gravitational wave stochastic background searches in pulsar timing data”, Phys. Rev. D,
79, 084030 (2009). [![]() ![]() |
* | 31 | Apostolatos, T.A., Lukes-Gerakopoulos, G. and Contopoulos, G., “How to Observe a Non-Kerr
Spacetime Using Gravitational Waves”, Phys. Rev. Lett., 103, 111101 (2009). [![]() ![]() ![]() |
* | 32 | Arkani-Hamed, N., Dimopoulos, S. and Dvali, G., “The hierarchy problem and new dimensions
at a millimeter”, Phys. Lett. B, 429, 263–272 (1998). [![]() ![]() |
* | 33 | Arkani-Hamed, N., Dimopoulos, S. and Dvali, G., “Phenomenology, astrophysics, and
cosmology of theories with submillimeter dimensions and TTeV scale quantum gravity”, Phys.
Rev. D, 59, 086004 (1999). [![]() ![]() ![]() |
* | 34 | Arkani-Hamed, N., Georgi, H. and Schwartz, M.D., “Effective field theory for massive
gravitons and gravity in theory space”, Ann. Phys. (N.Y.), 305, 96–118 (2003). [![]() ![]() ![]() |
* | 35 | Arnold, V.I., “Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic
motions under small perturbations of the Hamiltonian”, Russ. Math. Surv., 18(5), 9–36 (1963).
[![]() |
* | 36 | Arun, K.G., “Generic bounds on dipolar gravitational radiation from inspiralling compact
binaries”, Class. Quantum Grav., 29, 075011 (2012). [![]() ![]() ![]() |
* | 37 | Arun, K.G., Iyer, B.R., Qusailah, M.S.S. and Sathyaprakash, B.S., “Testing post-Newtonian
theory with gravitational wave observations”, Class. Quantum Grav., 23, L37–L43 (2006).
[![]() ![]() ![]() |
* | 38 | Arun, K.G. and Pai, A., “Tests of General Relativity and Alternative theories of gravity using
Gravitational Wave observations”, Int. J. Mod. Phys. D, 22, 1341012 (2013). [![]() ![]() ![]() |
* | 39 | Arun, K.G. and Will, C.M., “Bounding the mass of the graviton with gravitational waves:
effect of higher harmonics in gravitational waveform templates”, Class. Quantum Grav., 26,
155002 (2009). [![]() ![]() ![]() |
* | 40 | Arvanitaki, A. and Dubovsky, S., “Exploring the string axiverse with precision black hole
physics”, Phys. Rev. D, 83, 044026 (2011). [![]() ![]() ![]() |
* | 41 | Ashtekar, A., Balachandran, A.P. and Jo, S., “The CP Problem in Quantum Gravity”, Int. J.
Mod. Phys. A, 4, 1493–1514 (1989). [![]() ![]() |
* | 42 | Ashtekar, A., Bojowald, M. and Lewandowski, J., “Mathematical structure of loop quantum
cosmology”, Adv. Theor. Math. Phys., 7, 233–268 (2003). [![]() |
* | 43 | Ashtekar, A. and Lewandowski, J., “Background independent quantum gravity: a status
report”, Class. Quantum Grav., 21, R53–R152 (2004). [![]() ![]() |
* | 44 | Babak, S., Fang, H., Gair, J.R., Glampedakis, K. and Hughes, S.A., “‘Kludge’ gravitational
waveforms for a test-body orbiting a Kerr black hole”, Phys. Rev. D, 75, 024005 (2007). [![]() ![]() |
* | 45 | Babichev, E. and Deffayet, C., “An introduction to the Vainshtein mechanism”, Class. Quantum
Grav., 30, 184001 (2013). [![]() ![]() ![]() |
* | 46 | Balakrishna, J. and Shinkai, H., “Dynamical evolution of boson stars in Brans-Dicke theory”,
Phys. Rev. D, 58, 044016 (1998). [![]() ![]() |
* | 47 | Bambi, C., Giannotti, M. and Villante, F.L., “Response of primordial abundances to a general
modification of GN and/or of the early universe expansion rate”, Phys. Rev. D, 71, 123524
(2005). [![]() ![]() |
* | 48 | Bañados, M. and Ferreira, P.G., “Eddington’s Theory of Gravity and Its Progeny”, Phys. Rev.
Lett., 105, 011101 (2010). [![]() ![]() ![]() |
* | 49 | Barack, L. and Cutler, C., “LISA capture sources: Approximate waveforms, signal-to-noise
ratios, and parameter estimation accuracy”, Phys. Rev. D, 69, 082005 (2004). [![]() ![]() ![]() |
* | 50 | Barack, L. and Cutler, C., “Using LISA extreme-mass-ratio inspiral sources to test off-Kerr
deviations in the geometry of massive black holes”, Phys. Rev. D, 75, 042003 (2007). [![]() ![]() ![]() |
* | 51 | Barausse, E., Palenzuela, C., Ponce, M. and Lehner, L., “Neutron-star mergers in scalar-tensor
theories of gravity”, Phys. Rev. D, 87, 081506 (2013). [![]() ![]() ![]() |
* | 52 | Barausse, E., Rezzolla, L., Petroff, D. and Ansorg, M., “Gravitational waves from extreme mass
ratio inspirals in nonpure Kerr spacetimes”, Phys. Rev. D, 75, 064026 (2007). [![]() ![]() ![]() |
* | 53 | Baskaran, D., Polnarev, A.G., Pshirkov, M.S. and Postnov, K.A., “Limits on the speed
of gravitational waves from pulsar timing”, Phys. Rev. D, 78, 044018 (2008). [![]() ![]() |
* | 54 | Bekenstein, J.D., “Relativistic gravitation theory for the MOND paradigm”, Phys. Rev. D, 70,
083509 (2004). [![]() ![]() |
* | 55 | Bell, J.S. and Jackiw, R., “A PCAC Puzzle: π0 → γγ in the σ-Model”, Nuovo Cimento A, 60,
47–61 (1969). [![]() |
* | 56 | Bender, C.M. and Orszag, S.A., Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, International Series in Pure and Applied Mathematics, (McGraw-Hill, New York, 1978). |
* | 57 | Bennett, C.L. et al. (WMAP Collaboration), “Seven-year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?”,
Astrophys. J. Suppl. Ser., 192, 17 (2011). [![]() ![]() ![]() |
* | 58 | Berezhiani, Z., Comelli, D., Nesti, F. and Pilo, L., “Spontaneous Lorentz Breaking and Massive
Gravity”, Phys. Rev. Lett., 99, 131101 (2007). [![]() ![]() |
* | 59 | Berezhiani, Z., Comelli, D., Nesti, F. and Pilo, L., “Exact Spherically Symmetric Solutions in
Massive Gravity”, J. High Energy Phys., 0807, 130 (2008). [![]() ![]() |
* | 60 | Bergshoeff, E.A., Hohm, O. and Townsend, P.K., “New massive gravity”, in Damour, T.,
Jantzen, R. and Ruffini, R., eds., On Recent Developments in Theoretical and Experimental
General Relativity, Astrophysics and Relativistic Field Theories, Proceedings of the MG12
Meeting on General Relativity, Paris, France, 12 – 18 July 2009, pp. 2329–2331, (World
Scientific, Singapore; Hackensack, NJ, 2009). [![]() |
* | 61 | Bergshoeff, E.A., Kovacevic, M., Rosseel, J. and Yin, Y., “Massive Gravity: A Primer”, in
Calcagni, G., Papantonopoulos, L., Siopsis, G. and Tsamis, N., eds., Quantum Gravity and
Quantum Cosmology, Lecture Notes in Physics, 863, pp. 119–145, (Springer, Berlin; New York,
2013). [![]() ![]() |
* | 62 | Berry, C.P.L. and Gair, J.R., “Linearized f(R) gravity: Gravitational radiation and solar system
tests”, Phys. Rev. D, 83, 104022 (2011). [![]() ![]() ![]() |
* | 63 | Berti, E., Buonanno, A. and Will, C.M., “Estimating spinning binary parameters and testing
alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025 (2005). [![]() ![]() ![]() |
* | 64 | Berti, E., Buonanno, A. and Will, C.M., “Testing general relativity and probing the merger
history of massive black holes with LISA”, Class. Quantum Grav., 22, S943–S954 (2005). [![]() ![]() ![]() |
* | 65 | Berti, E., Cardoso, J., Cardoso, V. and Cavaglià, M., “Matched filtering and parameter
estimation of ringdown waveforms”, Phys. Rev. D, 76, 104044 (2007). [![]() ![]() ![]() |
* | 66 | Berti, E. and Cardoso, V., “Supermassive black holes or boson stars? Hair counting with
gravitational wave detectors”, Int. J. Mod. Phys. D, 15, 2209–2216 (2006). [![]() ![]() ![]() |
* | 67 | Berti, E., Cardoso, V., Gualtieri, L., Horbatsch, M.W. and Sperhake, U., “Numerical
simulations of single and binary black holes in scalar-tensor theories: Circumventing the no-hair
theorem”, Phys. Rev. D, 87, 124020 (2013). [![]() ![]() ![]() |
* | 68 | Berti, E., Cardoso, V. and Starinets, A.O., “Quasinormal modes of black holes and black
branes”, Class. Quantum Grav., 26, 163001 (2009). [![]() ![]() ![]() |
* | 69 | Berti, E., Cardoso, V. and Will, C.M., “Gravitational-wave spectroscopy of massive black
holes with the space interferometer LISA”, Phys. Rev. D, 73, 064030 (2006). [![]() ![]() ![]() |
* | 70 | Berti, E., Gair, J.R. and Sesana, A., “Graviton mass bounds from space-based
gravitational-wave observations of massive black hole populations”, Phys. Rev. D, 84, 101501
(2011). [![]() ![]() ![]() |
* | 71 | Berti, E., Gualtieri, L., Horbatsch, M.W. and Alsing, J., “Light scalar field constraints from
gravitational-wave observations of compact binaries”, Phys. Rev. D, 85, 122005 (2012). [![]() ![]() ![]() |
* | 72 | Berti, E., Iyer, S. and Will, C.M., “Post-Newtonian diagnosis of quasiequilibrium configurations
of neutron star–neutron star and neutron star–black hole binaries”, Phys. Rev. D, 77, 024019
(2008). [![]() ![]() |
* | 73 | Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the
Cassini spacecraft”, Nature, 425, 374–376 (2003). [![]() ![]() |
* | 74 | Bildsten, L. and Cutler, C., “Tidal interactions of inspiraling compact binaries”, Astrophys. J.,
400, 175–180 (1992). [![]() ![]() |
* | 75 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 9, lrr-2006-4 (2006). [![]() ![]() http://www.livingreviews.org/lrr-2006-4. |
* | 76 | Blas, D. and Sanctuary, H., “Gravitational radiation in Hořava gravity”, Phys. Rev. D, 84,
064004 (2011). [![]() ![]() |
* | 77 | Bojowald, M., “Loop Quantum Cosmology”, Living Rev. Relativity, 8, lrr-2005-11 (2005). [![]() ![]() http://www.livingreviews.org/lrr-2005-11. |
* | 78 | Bojowald, M. and Hossain, G.M., “Loop quantum gravity corrections to gravitational wave
dispersion”, Phys. Rev. D, 77, 023508 (2008). [![]() ![]() ![]() |
* | 79 | Boulware, D.G. and Deser, S., “String-Generated Gravity Models”, Phys. Rev. Lett., 55, 2656
(1985). [![]() |
* | 80 | Boyle, L., “The general theory of porcupines, perfect and imperfect”, arXiv, e-print, (2010).
[![]() ![]() |
* | 81 | Boyle, L., “Perfect porcupines: ideal networks for low frequency gravitational wave astronomy”,
arXiv, e-print, (2010). [![]() ![]() |
* | 82 | Brans, C. and Dicke, R.H., “Mach’s Principle and a Relativistic Theory of Gravitation”, Phys.
Rev., 124, 925–935 (1961). [![]() ![]() |
* | 83 | Brink, J., “Spacetime encodings. I. A spacetime reconstruction problem”, Phys. Rev. D, 78,
102001 (2008). [![]() ![]() |
* | 84 | Brink, J., “Spacetime encodings. II. Pictures of integrability”, Phys. Rev. D, 78, 102002 (2008).
[![]() ![]() ![]() |
* | 85 | Brink, J., “Spacetime encodings. III. Second order Killing tensors”, Phys. Rev. D, 81, 022001
(2010). [![]() ![]() |
* | 86 | Brink, J., “Spacetime encodings. IV. The relationship between Weyl curvature and killing
tensors in stationary axisymmetric vacuum spacetimes”, Phys. Rev. D, 81, 022002 (2010).
[![]() ![]() |
* | 87 | Brink, J., “Formal solution of the fourth order Killing equations for stationary axisymmetric
vacuum spacetimes”, Phys. Rev. D, 84, 104015 (2011). [![]() ![]() |
* | 88 | Brito, R., Cardoso, V. and Pani, P., “Massive spin-2 fields on black hole spacetimes: Instability
of the Schwarzschild and Kerr solutions and bounds on graviton mass”, Phys. Rev. D, 88,
023514 (2013). [![]() ![]() ![]() |
* | 89 | Burgess, C.P., “Quantum Gravity in Everyday Life: General Relativity as an Effective
Field Theory”, Living Rev. Relativity, 7, lrr-2004-5 (2004). [![]() ![]() http://www.livingreviews.org/lrr-2004-5. |
* | 90 | Calcagni, G. and Mercuri, S., “The Barbero-Immirzi field in canonical formalism of pure
gravity”, Phys. Rev. D, 79, 084004 (2009). [![]() ![]() |
* | 91 | Campanelli, M. and Lousto, C.O., “Are black holes in Brans-Dicke theory precisely the same
as a general relativity?”, Int. J. Mod. Phys. D, 2, 451–462 (1993). [![]() ![]() |
* | 92 | Campbell, B.A., Kaloper, N. and Olive, K.A., “Classical hair for Kerr-Newman black holes in
string gravity”, Phys. Lett. B, 285, 199–205 (1992). [![]() ![]() |
* | 93 | Canizares, P., Gair, J.R. and Sopuerta, C.F., “Testing Chern-Simons modified gravity with
observations of extreme-mass-ratio binaries”, J. Phys.: Conf. Ser., 363, 012019 (2012). [![]() ![]() ![]() |
* | 94 | Cardoso, V., Chakrabarti, S., Pani, P., Berti, E. and Gualtieri, L., “Floating and sinking: The
Imprint of massive scalars around rotating black holes”, Phys. Rev. Lett., 107, 241101 (2011).
[![]() ![]() ![]() |
* | 95 | Cardoso, V., Pani, P., Cadoni, M. and Cavaglià, M., “Ergoregion instability of ultracompact
astrophysical objects”, Phys. Rev. D, 77, 124044 (2008). [![]() ![]() |
* | 96 | Cardoso, V., Pani, P., Cadoni, M. and Cavaglià, M., “Instability of hyper-compact Kerr-like
objects”, Class. Quantum Grav., 25, 195010 (2008). [![]() ![]() |
* | 97 | Carson, J.E., “GLAST: Physics goals and instrument status”, J. Phys.: Conf. Ser., 60, 115–118
(2007). [![]() ![]() |
* | 98 | Carter, B., “Axisymmetric Black Hole Has Only Two Degrees of Freedom”, Phys. Rev. Lett.,
26, 331–333 (1971). [![]() ![]() |
* | 99 | Chamberlin, S.J. and Siemens, X., “Stochastic backgrounds in alternative theories of gravity:
overlap reduction functions for pulsar timing arrays”, Phys. Rev. D, 85, 082001 (2012). [![]() ![]() ![]() |
* | 100 | Chapline, G., “Quantum Phase Transitions and the Failure of Classical General Relativity”,
Int. J. Mod. Phys. A, 18, 3587–3590 (2003). [![]() ![]() ![]() |
* | 101 | Chatterji, S., Lazzarini, A., Stein, L., Sutton, P.J., Searle, A. and Tinto, M., “Coherent network
analysis technique for discriminating gravitational-wave bursts from instrumental noise”, Phys.
Rev. D, 74, 082005 (2006). [![]() ![]() |
* | 102 | Chatziioannou, K., Yunes, N. and Cornish, N.J., “Model-independent test of general relativity:
An extended post-Einsteinian framework with complete polarization content”, Phys. Rev. D,
86, 022004 (2012). [![]() ![]() ![]() |
* | 103 | Chernoff, D.F. and Finn, L.S., “Gravitational radiation, inspiraling binaries, and cosmology”,
Astrophys. J., 411, L5–L8 (1993). [![]() ![]() |
* | 104 | Chiba, T., “1∕R gravity and scalar-tensor gravity”, Phys. Lett. B, 575, 1–3 (2003). [![]() ![]() ![]() |
* | 105 | Chirenti, C.B.M.H. and Rezzolla, L., “How to tell a gravastar from a black hole”, Class.
Quantum Grav., 24, 4191–4206 (2007). [![]() ![]() |
* | 106 | Choudhury, S.R., Joshi, G.C., Mahajan, S. and McKellar, B.H.J., “Probing large distance
higher dimensional gravity from lensing data”, Astropart. Phys., 21, 559–563 (2004). [![]() ![]() |
* | 107 | Chouha, P.R. and Brandenberger, R.H., “T-Duality and the Spectrum of Gravitational Waves”,
arXiv, e-print, (2005). [![]() ![]() |
* | 108 | Coleman, S.R., “Q-balls”, Nucl. Phys. B, 262, 263–283 (1985). [![]() ![]() |
* | 109 | Colladay, D. and Kostelecký, V.A., “Lorentz-violating extension of the standard model”, Phys.
Rev. D, 58, 116002 (1998). [![]() ![]() |
* | 110 | Collins, J., Perez, A. and Sudarsky, D., “Lorentz invariance violation and its role in Quantum
Gravity phenomenology”, in Oriti, D., ed., Approaches to Quantum Gravity: Toward a
New Understanding of Space, Time and Matter, pp. 528–547, (Cambridge University Press,
Cambridge; New York, 2009). [![]() |
* | 111 | Collins, J., Perez, A., Sudarsky, D., Urrutia, L. and Vucetich, H., “Lorentz Invariance and
Quantum Gravity: An Additional Fine-Tuning Problem?”, Phys. Rev. Lett., 93, 191301 (2004).
[![]() ![]() ![]() |
* | 112 | Collins, N.A. and Hughes, S.A., “Towards a formalism for mapping the spacetimes of massive
compact objects: Bumpy black holes and their orbits”, Phys. Rev. D, 69, 124022 (2004). [![]() ![]() ![]() |
* | 113 | Colpi, M., Shapiro, S.L. and Wasserman, I., “Boson Stars: Gravitational Equilibria of
Self-Interacting Scalar Fields”, Phys. Rev. Lett., 57, 2485–2488 (1986). [![]() ![]() |
* | 114 | Connes, A., “Gravity coupled with matter and foundation of noncommutative geometry”,
Commun. Math. Phys., 182, 155–176 (1996). [![]() ![]() |
* | 115 | Contaldi, C.R., Magueijo, J. and Smolin, L., “Anomalous Cosmic-Microwave-Background
Polarization and Gravitational Chirality”, Phys. Rev. Lett., 101, 141101 (2008). [![]() ![]() |
* | 116 | Contopoulos, G., Lukes-Gerakopoulos, G. and Apostolatos, T.A., “Orbits in a non-Kerr
Dynamical System”, Int. J. Bifurcat. Chaos, 21, 2261–2277 (2011). [![]() ![]() |
* | 117 | Cooney, A., DeDeo, S. and Psaltis, D., “Gravity with Perturbative Constraints: Dark Energy
Without New Degrees of Freedom”, Phys. Rev. D, 79, 044033 (2009). [![]() ![]() |
* | 118 | Cooney, A., DeDeo, S. and Psaltis, D., “Neutron stars in f(R) gravity with perturbative
constraints”, Phys. Rev. D, 82, 064033 (2010). [![]() ![]() |
* | 119 | Copi, C.J., Davis, A.N. and Krauss, L.M., “New Nucleosynthesis Constraint on the Variation
of G”, Phys. Rev. Lett., 92, 171301 (2004). [![]() ![]() |
* | 120 | Corbin, V. and Cornish, N.J., “Pulsar Timing Array Observations of Massive Black Hole
Binaries”, arXiv, e-print, (2010). [![]() ![]() |
* | 121 | Corda, C., “Massive relic gravitational waves from f(R) theories of gravity: Production and
potential detection”, Eur. Phys. J. C, 65, 257–267 (2010). [![]() ![]() |
* | 122 | Cornish, N.J. and Crowder, J., “LISA data analysis using MCMC methods”, Phys. Rev. D,
72, 043005 (2005). [![]() ![]() |
* | 123 | Cornish, N.J. and Littenberg, T.B., “Tests of Bayesian model selection techniques for
gravitational wave astronomy”, Phys. Rev. D, 76, 083006 (2007). [![]() ![]() |
* | 124 | Cornish, N.J., Sampson, L., Yunes, N. and Pretorius, F., “Gravitational wave tests of general
relativity with the parameterized post-Einsteinian framework”, Phys. Rev. D, 84, 062003
(2011). [![]() ![]() ![]() |
* | 125 | Cutler, C. and Flanagan, É.É., “Gravitational waves from merging compact binaries: How
accurately can one extract the binary’s parameters from the inspiral wave form?”, Phys. Rev.
D, 49, 2658–2697 (1994). [![]() ![]() |
* | 126 | Cutler, C., Hiscock, W.A. and Larson, S.L., “LISA, binary stars, and the mass of the graviton”,
Phys. Rev. D, 67, 024015 (2003). [![]() ![]() ![]() |
* | 127 | Cutler, C. and Vallisneri, M., “LISA detections of massive black hole inspirals: Parameter
extraction errors due to inaccurate template waveforms”, Phys. Rev. D, 76, 104018 (2007).
[![]() ![]() |
* | 128 | Damour, T., “The general relativistic problem of motion and binary pulsars”, in Iyer, B.R., Kembhavi, A., Narlikar, J.V. and Vishveshwara, C.V., eds., Highlights in Gravitation and Cosmology, Proceedings of the Conference on Gravitation and Cosmology held in Goa, India, December 14 – 19, 1987, pp. 393–401, (Cambridge University Press, Cambridge; New York, 1988). |
* | 129 | Damour, T. and Esposito-Farèse, G., “Tensor-multi-scalar theories of gravitation”, Class.
Quantum Grav., 9, 2093–2176 (1992). [![]() ![]() |
* | 130 | Damour, T. and Esposito-Farèse, G., “Nonperturbative strong-field effects in tensor-scalar
theories of gravitation”, Phys. Rev. Lett., 70, 2220–2223 (1993). [![]() ![]() |
* | 131 | Damour, T. and Esposito-Farèse, G., “Tensor-scalar gravity and binary pulsar experiments”,
Phys. Rev. D, 54, 1474–1491 (1996). [![]() ![]() |
* | 132 | Damour, T. and Esposito-Farèse, G., “Gravitational-wave versus binary-pulsar tests of
strong-field gravity”, Phys. Rev. D, 58, 042001 (1998). [![]() ![]() ![]() |
* | 133 | Damour, T. and Polyakov, A.M., “The string dilaton and a least coupling principle”, Nucl.
Phys. B, 423, 532–558 (1994). [![]() ![]() |
* | 134 | Damour, T. and Polyakov, A.M., “String theory and gravity”, Gen. Relativ. Gravit., 26,
1171–1176 (1994). [![]() ![]() |
* | 135 | De Felice, A. and Tsujikawa, S., “f(R) Theories”, Living Rev. Relativity, 13, lrr-2010-3 (2010).
[![]() ![]() ![]() http://www.livingreviews.org/lrr-2010-3. |
* | 136 | de Rham, C., Gabadadze, G. and Tolley, A.J., “Resummation of Massive Gravity”, Phys. Rev.
Lett., 106, 231101 (2011). [![]() ![]() ![]() |
* | 137 | de Rham, C., Matas, A. and Tolley, A.J., “Galileon Radiation from Binary Systems”, Phys.
Rev. D, 87, 064024 (2013). [![]() ![]() |
* | 138 | de Rham, C., Tolley, A.J. and Wesley, D.H., “Vainshtein mechanism in binary pulsars”, Phys.
Rev. D, 87, 044025 (2013). [![]() ![]() |
* | 139 | DeDeo, S. and Psaltis, D., “Towards New Tests of Strong-field Gravity with Measurements
of Surface Atomic Line Redshifts from Neutron Stars”, Phys. Rev. Lett., 90, 141101 (2003).
[![]() ![]() ![]() |
* | 140 | Deffayet, C., Dvali, G., Gabadadze, G. and Vainshtein, A.I., “Nonperturbative continuity in
graviton mass versus perturbative discontinuity”, Phys. Rev. D, 65, 044026 (2002). [![]() ![]() |
* | 141 | Deffayet, C. and Menou, K., “Probing Gravity with Spacetime Sirens”, Astrophys. J., 668,
L143–L146 (2007). [![]() ![]() |
* | 142 | Del Pozzo, W., Veitch, J. and Vecchio, A., “Testing general relativity using Bayesian model
selection: Applications to observations of gravitational waves from compact binary systems”,
Phys. Rev. D, 83, 082002 (2011). [![]() ![]() ![]() |
* | 143 | Deller, A.T., Verbiest, J.P.W., Tingay, S.J. and Bailes, M., “Extremely High Precision VLBI
Astrometry of PSR J0437-4715 and Implications for Theories of Gravity”, Astrophys. J. Lett.,
685, L67–L70 (2008). [![]() ![]() |
* | 144 | Delsate, T., Cardoso, V. and Pani, P., “Anti de Sitter black holes and branes in dynamical
Chern-Simons gravity: perturbations, stability and the hydrodynamic modes”, J. High Energy
Phys., 2011(06), 055 (2011). [![]() ![]() |
* | 145 | Detweiler, S., “Pulsar timing measurements and the search for gravitational waves”, Astrophys.
J., 234, 1100–1104 (1979). [![]() ![]() |
* | 146 | Detweiler, S.L., “Black Holes and Gravitational Waves. III. The Resonant Frequencies of
Rotating Holes”, Astrophys. J., 239, 292–295 (1980). [![]() ![]() |
* | 147 | Detweiler, S.L., “Klein-Gordon Equation and Rotating Black Holes”, Phys. Rev. D, 22,
2323–2326 (1980). [![]() ![]() |
* | 148 | Dilkes, F.A., Duff, M.J., Liu, J.T. and Sati, H., “Quantum discontinuity between zero and
infinitesimal graviton mass with a Lambda term”, Phys. Rev. Lett., 87, 041301 (2001). [![]() ![]() |
* | 149 | Dirac, P.A.M., “The Cosmological Constants”, Nature, 139, 323 (1937). [![]() ![]() |
* | 150 | Douchin, F. and Haensel, P., “A unified equation of state of dense matter and neutron star
structure”, Astron. Astrophys., 380, 151–167 (2001). [![]() ![]() ![]() |
* | 151 | Drake, S.P. and Szekeres, P., “Uniqueness of the Newman–Janis Algorithm in Generating the
Kerr–Newman Metric”, Gen. Relativ. Gravit., 32, 445–458 (2000). [![]() ![]() |
* | 152 | Dreyer, O., Kelly, B.J., Krishnan, B., Finn, L.S., Garrison, D. and Lopez-Aleman, R.,
“Black-hole spectroscopy: Testing general relativity through gravitational-wave observations”,
Class. Quantum Grav., 21, 787–804 (2004). [![]() ![]() ![]() |
* | 153 | Droz, S., Knapp, D.J., Poisson, E. and Owen, B.J., “Gravitational waves from inspiraling
compact binaries: Validity of the stationary phase approximation to the Fourier transform”,
Phys. Rev. D, 59, 124016 (1999). [![]() ![]() |
* | 154 | Dubeibe, F.L., Pachón, L.A. and Sanabria-Gómez, Jose D., “Chaotic dynamics around
astrophysical objects with nonisotropic stresses”, Phys. Rev. D, 75, 023008 (2007). [![]() ![]() ![]() |
* | 155 | Dubovsky, S., Tinyakov, P. and Zaldarriaga, M., “Bumpy black holes from spontaneous Lorentz
violation”, J. High Energy Phys., 2007(11), 083 (2007). [![]() ![]() |
* | 156 | Dunkley, J. et al. (WMAP Collaboration), “Five-Year Wilkinson Microwave Anisotropy Probe
Observations: Likelihoods and Parameters from the WMAP Data”, Astrophys. J. Suppl. Ser.,
180, 306–329 (2009). [![]() ![]() |
* | 157 | Dvali, G., Gabadadze, G. and Porrati, M., “4D gravity on a brane in 5D Minkowski space”,
Phys. Lett. B, 485, 208–214 (2000). [![]() ![]() |
* | 158 | Dyda, S., Flanagan, É.É. and Kamionkowski, M., “Vacuum Instability in Chern-Simons
Gravity”, Phys. Rev. D, 86, 124031 (2012). [![]() ![]() ![]() |
* | 159 | Dykla, J.J., Conserved quantities and the formation of black holes in the Brans-Dicke Theory
of Gravitation, Ph.D. thesis, (California Institute of Technology, Pasadena, CA, 1972). [![]() |
* | 160 | Eardley, D.M., “Observable effects of a scalar gravitational field in a binary pulsar”, Astrophys.
J. Lett., 196, L59–L62 (1975). [![]() ![]() |
* | 161 | Eardley, D.M., Lee, D.L. and Lightman, A.P., “Gravitational-Wave Observations as a Tool for
Testing Relativistic Gravity”, Phys. Rev. D, 8, 3308–3321 (1973). [![]() ![]() |
* | 162 | Ellis, J.A., Siemens, X. and van Haasteren, R., “An Efficient Approximation to the Likelihood
for Gravitational Wave Stochastic Background Detection Using Pulsar Timing Data”,
Astrophys. J., 769, 63 (2013). [![]() ![]() ![]() |
* | 163 | Emparan, R., Fabbri, A. and Kaloper, N., “Quantum black holes as holograms in AdS brane
worlds”, J. High Energy Phys., 2002(08), 043 (2002). [![]() ![]() ![]() |
* | 164 | Faraoni, V., “Illusions of general relativity in Brans-Dicke gravity”, Phys. Rev. D, 59, 084021
(1999). [![]() ![]() |
* | 165 | Faraoni, V. and Gunzig, E., “Einstein frame or Jordan frame?”, Int. J. Theor. Phys., 38,
217–225 (1999). [![]() ![]() |
* | 166 | Faraoni, V., Gunzig, E. and Nardone, P., “Conformal transformations in classical gravitational
theories and in cosmology”, Fundam. Cosmic Phys., 20, 121–175 (1999). [![]() |
* | 167 | Feroz, F., Gair, J.R., Hobson, M.P. and Porter, E.K., “Use of the MultiNest algorithm for
gravitational wave data analysis”, Class. Quantum Grav., 26, 215003 (2009). [![]() ![]() ![]() |
* | 168 | Ferrari, V., Gualtieri, L. and Maselli, A., “Tidal interaction in compact binaries: a
post-Newtonian affine framework”, Phys. Rev. D, 85, 044045 (2012). [![]() ![]() |
* | 169 | Fierz, M. and Pauli, W., “On relativistic wave equations for particles of arbitrary spin in an
electromagnetic field”, Proc. R. Soc. London, Ser. A, 173, 211–232 (1939). [![]() ![]() |
* | 170 | Figueras, P., Lucietti, J. and Wiseman, T., “Ricci solitons, Ricci flow, and strongly coupled
CFT in the Schwarzschild Unruh or Boulware vacua”, Class. Quantum Grav., 28, 215018
(2011). [![]() ![]() |
* | 171 | Figueras, P. and Tunyasuvunakool, S., “CFTs in rotating black hole backgrounds”, Class.
Quantum Grav., 30, 125015 (2013). [![]() ![]() |
* | 172 | Figueras, P. and Wiseman, T., “Gravity and large black holes in Randall-Sundrum II
braneworlds”, Phys. Rev. Lett., 107, 081101 (2011). [![]() ![]() |
* | 173 | Finn, L.S. and Chernoff, D.F., “Observing binary inspiral in gravitational radiation: One
interferometer”, Phys. Rev. D, 47, 2198–2219 (1993). [![]() ![]() |
* | 174 | Finn, L.S. and Sutton, P.J., “Bounding the mass of the graviton using binary pulsar
observations”, Phys. Rev. D, 65, 044022 (2002). [![]() ![]() ![]() |
* | 175 | Flanagan, É.É. and Hinderer, T., “Constraining neutron star tidal Love numbers with
gravitational wave detectors”, Phys. Rev. D, 77, 021502 (2008). [![]() ![]() ![]() |
* | 176 | Fradkin, E.S. and Tseytlin, A.A., “Quantum string theory effective action”, Nucl. Phys. B,
261, 1–27 (1985). [![]() ![]() |
* | 177 | Freire, P.C.C. et al., “The relativistic pulsar–white dwarf binary PSR J1738+0333 – II. The
most stringent test of scalar–tensor gravity”, Mon. Not. R. Astron. Soc., 423, 3328–3343 (2012).
[![]() ![]() ![]() |
* | 178 | Friedberg, R., Lee, T.D. and Pang, Y., “Mini-soliton stars”, Phys. Rev. D, 35, 3640–3657
(1987). [![]() ![]() |
* | 179 | Friedberg, R., Lee, T.D. and Pang, Y., “Scalar soliton stars and black holes”, Phys. Rev. D,
35, 3658–3677 (1987). [![]() ![]() |
* | 180 | Frolov, A.V. and Guo, J.-Q., “Small Cosmological Constant from Running Gravitational
Coupling”, arXiv, e-print, (2011). [![]() ![]() |
* | 181 | Fujii, Y. and Maeda, K.-I., The Scalar-Tensor Theory of Gravitation, Cambridge Monographs
on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2003). [![]() |
* | 182 | Gair, J.R., Li, C. and Mandel, I., “Observable properties of orbits in exact bumpy spacetimes”,
Phys. Rev. D, 77, 024035 (2008). [![]() ![]() ![]() |
* | 183 | Gair, J.R., Vallisneri, M., Larson, S.L. and Baker, J.G., “Testing General Relativity with
Low-Frequency, Space-Based Gravitational-Wave Detectors”, Living Rev. Relativity, 16,
lrr-2013-7 (2013). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2013-7. |
* | 184 | Gair, J.R. and Yunes, N., “Approximate waveforms for extreme-mass-ratio inspirals in modified
gravity spacetimes”, Phys. Rev. D, 84, 064016 (2011). [![]() ![]() ![]() |
* | 185 | Gambini, R., Rastgoo, S. and Pullin, J., “Small Lorentz violations in quantum gravity: do
they lead to unacceptably large effects?”, Class. Quantum Grav., 28, 155005 (2011). [![]() ![]() |
* | 186 | Garattini, R., “Modified dispersion relations and noncommutative geometry lead to a finite
Zero Point Energy”, in Kouneiher, J., Barbachoux, C., Masson, T. and Vey, D., eds., Frontiers
of Fundamental Physics: The Eleventh International Symposium, Paris, France, 6 – 9 July 2010,
AIP Conference Proceedings, 1446, pp. 298–310, (American Institute of Physics, Melville, NY,
2011). [![]() ![]() ![]() |
* | 187 | Garattini, R. and Mandanici, G., “Modified dispersion relations lead to a finite zero point
gravitational energy”, Phys. Rev. D, 83, 084021 (2011). [![]() ![]() |
* | 188 | Garattini, R. and Mandanici, G., “Particle propagation and effective space-time in gravity’s
rainbow”, Phys. Rev. D, 85, 023507 (2012). [![]() ![]() |
* | 189 | Garay, L.J. and García-Bellido, J., “Jordan–Brans–Dicke quantum wormholes and Coleman’s
mechanism”, Nucl. Phys. B, 400, 416–434 (1993). [![]() ![]() |
* | 190 | Garfinkle, D., Pretorius, F. and Yunes, N., “Linear stability analysis and the speed of
gravitational waves in dynamical Chern-Simons modified gravity”, Phys. Rev. D, 82, 041501
(2010). [![]() ![]() |
* | 191 | Gasperini, M. and Ungarelli, C., “Detecting a relic background of scalar waves with LIGO”,
Phys. Rev. D, 64, 064009 (2001). [![]() ![]() |
* | 192 | Gates Jr, S.J., Ketov, S.V. and Yunes, N., “Seeking the Loop Quantum Gravity
Barbero-Immirzi Parameter and Field in 4D, 𝒩 = 1 Supergravity”, Phys. Rev. D, 80, 065003
(2009). [![]() ![]() |
* | 193 | Gehrels, N. et al. (Swift team), “The Swift Gamma-Ray Burst Mission”, in Fenimore, E. and
Galassi, M., eds., Gamma-Ray Bursts: 30 Years of Discovery, Gamma-Ray Burst Symposium,
Santa Fe, NM, USA, 8 – 12 September 2003, AIP Conference Proceedings, 727, pp. 637–641,
(American Institute of Physics, Melville, NY, 2004). [![]() ![]() |
* | 194 | Geroch, R., “Multipole moments. I. Flat space”, J. Math. Phys., 11, 1955–1961 (1970). [![]() ![]() |
* | 195 | Geroch, R., “Multipole moments. II. Curved space”, J. Math. Phys., 11, 2580–2588 (1970).
[![]() ![]() |
* | 196 | Glampedakis, K. and Babak, S., “Mapping spacetimes with LISA: Inspiral of a test-body
in a ‘quasi-Kerr’ field”, Class. Quantum Grav., 23, 4167–4188 (2006). [![]() ![]() ![]() |
* | 197 | Goenner, H., “Some remarks on the genesis of scalar-tensor theories”, Gen. Relativ. Gravit.,
44, 2077–2097 (2012). [![]() ![]() |
* | 198 | Goldberger, W.D. and Rothstein, I.Z., “Effective field theory of gravity for extended objects”,
Phys. Rev. D, 73, 104029 (2006). [![]() ![]() |
* | 199 | Goldberger, W.D. and Rothstein, I.Z., “Towers of gravitational theories”, Gen. Relativ. Gravit.,
38, 1537–1546 (2006). [![]() ![]() ![]() |
* | 200 | Goldhaber, A.S. and Nieto, M.M., “Mass of the graviton”, Phys. Rev. D, 9, 1119–1121 (1974).
[![]() ![]() |
* | 201 | Gossan, S., Veitch, J. and Sathyaprakash, B.S., “Bayesian model selection for testing the
no-hair theorem with black hole ringdowns”, Phys. Rev. D, 85, 124056 (2012). [![]() ![]() ![]() |
* | 202 | Gralla, S.E., “Motion of small bodies in classical field theory”, Phys. Rev. D, 81, 084060 (2010).
[![]() ![]() |
* | 203 | Green, M.B., Schwarz, J.H. and Witten, E., Superstring Theory. Vol 1: Introduction, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1987). |
* | 204 | Green, M.B., Schwarz, J.H. and Witten, E., Superstring Theory. Vol 2: Loop Amplitudes, Anomalies and Phenomenology, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1987). |
* | 205 | Gregory, P.C., Bayesian Logical Data Analysis for the Physical Sciences: A Comparative
Approach with ‘Mathematica’ Support, (Cambridge University Press, Cambridge; New York,
2005). [![]() ![]() |
* | 206 | Groenewold, H.J., “On the principles of elementary quantum mechanics”, Physica, 12, 405–460
(1946). [![]() ![]() |
* | 207 | Grumiller, D. and Yunes, N., “How do black holes spin in Chern-Simons modified gravity?”,
Phys. Rev. D, 77, 044015 (2008). [![]() ![]() ![]() |
* | 208 | Guenther, D.B., Krauss, L.M. and Demarque, P., “Testing the Constancy of the Gravitational
Constant Using Helioseismology”, Astrophys. J., 498, 871–876 (1998). [![]() ![]() |
* | 209 | Guéron, E. and Letelier, P.S., “Chaos in pseudo-Newtonian black holes with halos”, Astron.
Astrophys., 368, 716–720 (2001). [![]() ![]() ![]() |
* | 210 | Guéron, E. and Letelier, P.S., “Geodesic chaos around quadrupolar deformed centers of
attraction”, Phys. Rev. E, 66, 046611 (2002). [![]() ![]() |
* | 211 | Gümrükçüoğlu, A.E., Kuroyanagi, S., Lin, C., Mukohyama, S. and Tanahashi, N.,
“Gravitational wave signal from massive gravity”, Class. Quantum Grav., 29, 235026 (2012).
[![]() ![]() |
* | 212 | Gürsel, Y. and Tinto, M., “Near optimal solution to the inverse problem for gravitational-wave
bursts”, Phys. Rev. D, 40, 3884–3938 (1989). [![]() ![]() |
* | 213 | Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46–52
(1974). [![]() ![]() |
* | 214 | Harada, T., “Stability analysis of spherically symmetric star in scalar - tensor theories of
gravity”, Prog. Theor. Phys., 98, 359–379 (1997). [![]() ![]() |
* | 215 | Harada, T., “Neutron stars in scalar tensor theories of gravity and catastrophe theory”, Phys.
Rev. D, 57, 4802–4811 (1998). [![]() ![]() |
* | 216 | Harada, T., Chiba, T., Nakao, K.-I. and Nakamura, T., “Scalar gravitational wave from
Oppenheimer-Snyder collapse in scalar-tensor theories of gravity”, Phys. Rev. D, 55, 2024–2037
(1997). [![]() ![]() |
* | 217 | Harry, G.M. (LIGO Scientific Collaboration), “Advanced LIGO: The next generation of
gravitational wave detectors”, Class. Quantum Grav., 27, 084006 (2010). [![]() ![]() |
* | 218 | Hartle, J.B. and Thorne, K.S., “Slowly Rotating Relativistic Stars. II. Models for Neutron
Stars and Supermassive Stars”, Astrophys. J., 153, 807–834 (1968). [![]() ![]() |
* | 219 | Hassan, S.F. and Rosen, R.A., “Bimetric Gravity from Ghost-free Massive Gravity”, J. High
Energy Phys., 2012(02), 126 (2012). [![]() ![]() |
* | 220 | Hassan, S.F. and Rosen, R.A., “Confirmation of the Secondary Constraint and Absence of
Ghost in Massive Gravity and Bimetric Gravity”, J. High Energy Phys., 2012(04), 123 (2012).
[![]() ![]() |
* | 221 | Hastings, W.K., “Monte Carlo sampling methods using Markov chains and their applications”,
Biometrika, 57, 97–109 (1970). [![]() |
* | 222 | Hawking, S.W., “Gravitational Radiation from Colliding Black Holes”, Phys. Rev. Lett., 26,
1344–1346 (1971). [![]() ![]() |
* | 223 | Hawking, S.W., “Black Holes in General Relativity”, Commun. Math. Phys., 25, 152–166
(1972). [![]() ![]() |
* | 224 | Hawking, S.W., “Black Holes in the Brans-Dicke Theory of Gravitation”, Commun. Math.
Phys., 25, 167–171 (1972). [![]() ![]() |
* | 225 | Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge
Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York,
1973). [![]() ![]() |
* | 226 | Hawking, S.W. and Hartle, J.B., “Energy and angular momentum flow into a black hole”,
Commun. Math. Phys., 27, 283–290 (1972). [![]() ![]() |
* | 227 | Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, (Cambridge University
Press, Cambridge; New York, 1987). [![]() |
* | 228 | Hayama, K. and Nishizawa, A., “Model-independent test of gravity with a network of
ground-based gravitational-wave detectors”, Phys. Rev. D, 87, 062003 (2013). [![]() ![]() ![]() |
* | 229 | Hayasaki, K., Yagi, K., Tanaka, T. and Mineshige, S., “Gravitational wave diagnosis of a
circumbinary disk”, Phys. Rev. D, 87, 044051 (2013). [![]() ![]() |
* | 230 | Healy, J., Bode, T., Haas, R., Pazos, E., Laguna, P., Shoemaker, D.M. and Yunes, N., “Late
Inspiral and Merger of Binary Black Holes in Scalar-Tensor Theories of Gravity”, arXiv, e-print,
(2011). [![]() ![]() |
* | 231 | Hellings, R.W. and Downs, G.S., “Upper limits on the isotropic gravitational radiation
background from pulsar timing analysis”, Astrophys. J. Lett., 265, L39–L42 (1983). [![]() ![]() |
* | 232 | Hinterbichler, K., “Theoretical Aspects of Massive Gravity”, Rev. Mod. Phys., 84, 671–710
(2012). [![]() ![]() |
* | 233 | Hořava, P., “Membranes at quantum criticality”, J. High Energy Phys., 2009(03), 020 (2009).
[![]() ![]() |
* | 234 | Hořava, P., “Quantum gravity at a Lifshitz point”, Phys. Rev. D, 79, 084008 (2009). [![]() ![]() |
* | 235 | Horbatsch, M.W. and Burgess, C.P., “Semi-Analytic Stellar Structure in Scalar-Tensor
Gravity”, J. Cosmol. Astropart. Phys., 2011(08), 027 (2011). [![]() ![]() |
* | 236 | Horbatsch, M.W. and Burgess, C.P., “Cosmic black-hole hair growth and quasar OJ287”, J.
Cosmol. Astropart. Phys., 2012(05), 010 (2012). [![]() ![]() ![]() |
* | 237 | Hoyle, C.D., Kapner, D.J., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U. and
Swanson, H.E., “Submillimeter tests of the gravitational inverse-square law”, Phys. Rev. D,
70, 042004 (2004). [![]() ![]() |
* | 238 | Hughes, S.A., “Evolution
of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission”, Phys.
Rev. D, 61, 084004 (2000). [![]() ![]() |
* | 239 | Hughes, S.A., “Evolution of circular, nonequatorial orbits of Kerr black holes due to
gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms”, Phys. Rev.
D, 64, 064004 (2001). [![]() ![]() |
* | 240 | Huwyler, C., Klein, A. and Jetzer, P., “Testing general relativity with LISA including spin
precession and higher harmonics in the waveform”, Phys. Rev. D, 86, 084028 (2012). [![]() ![]() ![]() |
* | 241 | Isaacson, R.A., “Gravitational Radiation in the Limit of High Frequency. I. The Linear
Approximation and Geometrical Optics”, Phys. Rev., 166, 1263–1271 (1968). [![]() ![]() |
* | 242 | Isaacson, R.A., “Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms
and the Effective Stress Tensor”, Phys. Rev., 166, 1272–1279 (1968). [![]() ![]() |
* | 243 | Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev., 164, 1776–1779
(1967). [![]() ![]() |
* | 244 | Israel, W., “Event Horizons in Static Electrovac Space-Times”, Commun. Math. Phys., 8,
245–260 (1968). [![]() ![]() |
* | 245 | Jackiw, R. and Pi, S.-Y., “Chern-Simons modification of general relativity”, Phys. Rev. D, 68,
104012 (2003). [![]() ![]() ![]() |
* | 246 | Jacobson, T., “Primordial black hole evolution in tensor scalar cosmology”, Phys. Rev. Lett.,
83, 2699–2702 (1999). [![]() ![]() |
* | 247 | Jacobson, T., “Einstein-æther gravity: A status report”, in From Quantum to Emergent
Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science,
PoS(QG-Ph)020, (SISSA, Trieste, 2008). [![]() ![]() |
* | 248 | Jaranowski, P. and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample
Applications: The Gaussian Case”, Living Rev. Relativity, 15, lrr-2012-4 (2012). [![]() ![]() http://www.livingreviews.org/lrr-2012-4. |
* | 249 | Jofré, P., Reisenegger, A. and Fernández, R., “Constraining a Possible Time Variation of
the Gravitational Constant through ‘Gravitochemical Heating’ of Neutron Stars”, Phys. Rev.
Lett., 97, 131102 (2006). [![]() ![]() |
* | 250 | Johannsen, T. and Psaltis, D., “Testing the No-Hair Theorem with Observations in the
Electromagnetic Spectrum. I. Properties of a Quasi-Kerr Spacetime”, Astrophys. J., 716,
187–197 (2010). [![]() ![]() |
* | 251 | Johannsen, T. and Psaltis, D., “Testing the No-Hair Theorem with Observations in the
Electromagnetic Spectrum. II. Black Hole Images”, Astrophys. J., 718, 446–454 (2010). [![]() ![]() |
* | 252 | Johannsen, T. and Psaltis, D., “Metric for rapidly spinning black holes suitable for strong-field
tests of the no-hair theorem”, Phys. Rev. D, 83, 124015 (2011). [![]() ![]() |
* | 253 | Johannsen, T. and Psaltis, D., “Testing the No-Hair Theorem with Observations in the
Electromagnetic Spectrum. III. Quasi-Periodic Variability”, Astrophys. J., 726, 11 (2011).
[![]() ![]() |
* | 254 | Johannsen, T. and Psaltis, D., “Testing the No-Hair Theorem with Observations in the
Electromagnetic Spectrum. IV. Relativistically Broadened Iron Lines”, Astrophys. J., 773, 57
(2013). [![]() ![]() ![]() |
* | 255 | Johannsen, T., Psaltis, D. and McClintock, J.E., “Constraints on the Size of Extra Dimensions
from the Orbital Evolution of Black-Hole X-Ray Binaries”, Astrophys. J., 691, 997–1004 (2009).
[![]() ![]() ![]() |
* | 256 | Kamaretsos, I., Hannam, M., Husa, S. and Sathyaprakash, B.S., “Black-hole hair loss: Learning
about binary progenitors from ringdown signals”, Phys. Rev. D, 85, 024018 (2012). [![]() ![]() ![]() |
* | 257 | Kanti, P., Mavromatos, N.E., Rizos, J., Tamvakis, K. and Winstanley, E., “Dilatonic black
holes in higher curvature string gravity”, Phys. Rev. D, 54, 5049–5058 (1996). [![]() ![]() |
* | 258 | Kanti, P., Mavromatos, N.E., Rizos, J., Tamvakis, K. and Winstanley, E., “Dilatonic black
holes in higher curvature string gravity: II. Linear stability”, Phys. Rev. D, 57, 6255–6264
(1998). [![]() ![]() |
* | 259 | Kapner, D.J., Cook, T.S., Adelberger, E.G., Gundlach, J.H., Heckel, B.R., Hoyle, C.D. and
Swanson, H.E., “Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length
Scale”, Phys. Rev. Lett., 98, 021101 (2007). [![]() ![]() |
* | 260 | Kaspi, V.M., Taylor, J.H. and Ryba, M.F., “High-precision timing of millisecond pulsars. III.
Long-term monitoring of PSRs B1855+09 and B1937+21”, Astrophys. J., 428, 713 (1994).
[![]() ![]() |
* | 261 | Kehagias, A. and Sfetsos, K., “Deviations from the 1∕r2 Newton law due to extra dimensions”,
Phys. Lett. B, 472, 39–44 (2000). [![]() ![]() |
* | 262 | Keppel, D. and Ajith, P., “Constraining the mass of the graviton using coalescing black-hole
binaries”, Phys. Rev. D, 82, 122001 (2010). [![]() ![]() ![]() |
* | 263 | Kesden, M., Gair, J.R. and Kamionkowski, M., “Gravitational-wave signature of an inspiral
into a supermassive horizonless object”, Phys. Rev. D, 71, 044015 (2005). [![]() ![]() ![]() |
* | 264 | Kim, H., “New black hole solutions in Brans-Dicke theory of gravity”, Phys. Rev. D, 60, 024001
(1999). [![]() ![]() |
* | 265 | Klein, A., Cornish, N. and Yunes, N., “Gravitational Waveforms for Precessing, Quasi-circular
Binaries via Multiple Scale Analysis and Uniform Asymptotics: The Near Spin Alignment
Case”, arXiv, e-print, (2013). [![]() |
* | 266 | Kocsis, B., Haiman, Z. and Menou, K., “Premerger Localization of Gravitational Wave
Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart”, Astrophys.
J., 684, 870–887 (2008). [![]() ![]() ![]() |
* | 267 | Kocsis, B., Yunes, N. and Loeb, A., “Observable signatures of extreme mass-ratio inspiral black
hole binaries embedded in thin accretion disks”, Phys. Rev. D, 84, 024032 (2011). [![]() ![]() ![]() |
* | 268 | Kodama, H. and Yoshino, H., “Axiverse and Black Hole”, Int. J. Mod. Phys.: Conf. Ser., 7,
84–115 (2012). [![]() ![]() ![]() |
* | 269 | Kogan, I.I., Mouslopoulos, S. and Papazoglou, A., “The m → 0 limit for massive graviton in
dS4 and AdS4: How to circumvent the van Dam–Veltman–Zakharov discontinuity”, Phys. Lett.
B, 503, 173–180 (2001). [![]() ![]() |
* | 270 | Kolmogorov, A.N., “O sohranenii uslovnoperiodicheskih dvizhenij pri malom izmenenii funkcii Gamil’tona”, Dokl. Akad. Nauk. SSSR, 98, 527–530 (1954). On conservation of conditionally periodic motions for a small change in Hamilton’s function. |
* | 271 | Komatsu, E. et al. (WMAP Collaboration), “Five-year Wilkinson Microwave Anisotropy Probe
observations: cosmological interpretation”, Astrophys. J. Suppl. Ser., 180, 330–376 (2009).
[![]() ![]() ![]() |
* | 272 | Konno, K., Matsuyama, T. and Tanda, S., “Rotating Black Hole in Extended Chern-Simons
Modified Gravity”, Prog. Theor. Phys., 122, 561–568 (2009). [![]() ![]() ![]() |
* | 273 | Kramer, M. and Wex, N., “The double pulsar system: A unique laboratory for gravity”, Class.
Quantum Grav., 26, 073001 (2009). [![]() ![]() |
* | 274 | Kramer, M. et al., “Tests of General Relativity from Timing the Double Pulsar”, Science, 314,
97–102 (2006). [![]() ![]() ![]() |
* | 275 | Kusenko, A., “Solitons in the supersymmetric extensions of the standard model”, Phys. Lett.
B, 405, 108–113 (1997). [![]() ![]() |
* | 276 | Kusenko, A., “Supersymmetric Q-balls: Theory and Cosmology”, in Nath, P., ed., Particles,
Strings And Cosmology (PASCOS 98), Proceedings of the Sixth International Symposium,
Boston, Massachusetts, 22 – 29 March 1998, pp. 540–543, (World Scientific, Singapore;
Hackensack, NJ, 1999). [![]() |
* | 277 | Laguna, P., Larson, S.L., Spergel, D. and Yunes, N., “Integrated Sachs–Wolfe Effect for
Gravitational Radiation”, Astrophys. J. Lett., 715, L12–L15 (2009). [![]() ![]() |
* | 278 | Lanahan-Tremblay, N. and Faraoni, V., “The Cauchy problem of f(R) gravity”, Class.
Quantum Grav., 24, 5667–5679 (2007). [![]() ![]() ![]() |
* | 279 | Lang, R.N. and Hughes, S.A., “Measuring coalescing massive binary black holes
with gravitational waves: The impact of spin-induced precession”, Phys. Rev. D,
74, 122001 (2006). [![]() ![]() |
* | 280 | Lang, R.N., Hughes, S.A. and Cornish, N.J., “Measuring parameters of massive black hole
binaries with partially aligned spins”, Phys. Rev. D, 84, 022002 (2011). [![]() ![]() |
* | 281 | Larson, S.L. and Hiscock, W.A., “Using binary stars to bound the mass of the graviton”, Phys.
Rev. D, 61, 104008 (2000). [![]() ![]() ![]() |
* | 282 | Lattimer, J.M. and Schutz, B.F., “Constraining the equation of state with moment of inertia
measurements”, Astrophys. J., 629, 979–984 (2005). [![]() ![]() |
* | 283 | Lattimer, J.M. and Swesty, F.D., “A generalized equation of state for hot, dense matter”, Nucl.
Phys. A, 535, 331–376 (1991). [![]() ![]() |
* | 284 | Lee, K., Jenet, F.A. and Price, R.H., “Pulsar Timing as a Probe of Non-Einsteinian
Polarizations of Gravitational Waves”, Astrophys. J., 685, 1304–1319 (2008). [![]() ![]() |
* | 285 | Lee, K., Jenet, F.A., Price, R.H., Wex, N. and Kramer, M., “Detecting Massive Gravitons Using
Pulsar Timing Arrays”, Astrophys. J., 722, 1589–1597 (2010). [![]() ![]() ![]() |
* | 286 | Letelier, P.S. and Vieira, W.M., “Chaos and rotating black holes with halos”, Phys. Rev. D,
56, 8095–8098 (1997). [![]() ![]() |
* | 287 | Letelier, P.S. and Vieira, W.M., “Chaos in black holes surrounded by gravitational waves”,
Class. Quantum Grav., 14, 1249–1257 (1997). [![]() ![]() ![]() |
* | 288 | Letelier, P.S. and Vieira, W.M., “Chaos and Taub-NUT related spacetimes”, Phys. Lett. A,
244, 324–328 (1998). [![]() ![]() |
* | 289 | Li, C. and Lovelace, G., “Generalization of Ryan’s theorem: Probing tidal coupling with
gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals”, Phys.
Rev. D, 77, 064022 (2008). [![]() ![]() ![]() |
* | 290 | Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity using
compact binary coalescence”, Phys. Rev. D, 85, 082003 (2012). [![]() ![]() ![]() |
* | 291 | Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity
using compact binary coalescence: Further investigations”, J. Phys.: Conf. Ser., 363, 012028
(2012). [![]() ![]() ![]() |
* | 292 | Lichtenberg, A.J. and Lieberman, M.A., Regular and Chaotic Dynamics, Applied Mathematical Sciences, 38, (Springer, Berlin, 1992), 2nd edition. |
* | 293 | Lightman, A.P. and Lee, D.L., “New Two-Metric Theory of Gravity with Prior Geometry”,
Phys. Rev. D, 8, 3293–3302 (1973). [![]() ![]() |
* | 294 | Littenberg, T.B. and Cornish, N.J., “Bayesian approach to the detection problem in
gravitational wave astronomy”, Phys. Rev. D, 80, 063007 (2009). [![]() ![]() ![]() |
* | 295 | Lue, A., Wang, L. and Kamionkowski, M., “Cosmological Signature of New Parity-Violating
Interactions”, Phys. Rev. Lett., 83, 1506–1509 (1999). [![]() ![]() |
* | 296 | Lukes-Gerakopoulos, G., “The non-integrability of the Zipoy-Voorhees metric”, Phys. Rev. D,
86, 044013 (2012). [![]() ![]() |
* | 297 | Lukes-Gerakopoulos, G., Apostolatos, T.A. and Contopoulos, G., “Observable signature of a
background deviating from the Kerr metric”, Phys. Rev. D, 81, 124005 (2010). [![]() ![]() ![]() |
* | 298 | Lyne, A.G. et al., “A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and
Plasma Physics”, Science, 303, 1153–1157 (2004). [![]() ![]() |
* | 299 | Maggiore, M. and Nicolis, A., “Detection strategies for scalar gravitational waves with
interferometers and resonant spheres”, Phys. Rev. D, 62, 024004 (2000). [![]() ![]() ![]() |
* | 300 | Magueijo, J. and Smolin, L., “Lorentz Invariance with an Invariant Energy Scale”, Phys. Rev.
Lett., 88, 190403 (2002). [![]() ![]() ![]() |
* | 301 | Maldacena, J.M., “The large N limit of superconformal field theories and supergravity”, Adv.
Theor. Math. Phys., 2, 231–252 (1998). [![]() ![]() |
* | 302 | Manko, V.S. and Novikov, I.D., “Generalizations of the Kerr and Kerr-Newman metrics
possessing an arbitrary set of mass-multipole moments”, Class. Quantum Grav., 9, 2477–2487
(1992). [![]() ![]() |
* | 303 | Marsh, D.J.E., Macaulay, E., Trebitsch, M. and Ferreira, P.G., “Ultralight axions: Degeneracies
with massive neutrinos and forecasts for future cosmological observations”, Phys. Rev. D, 85,
103514 (2012). [![]() ![]() ![]() |
* | 304 | Maselli, A., Cardoso, V., Ferrari, V., Gualtieri, L. and Pani, P., “Equation-of-state-independent
relations in neutron stars”, Phys. Rev. D, 88, 023007 (2013). [![]() ![]() ![]() |
* | 305 | Maselli, A., Gualtieri, L., Pannarale, F. and Ferrari, V., “On the validity of the adiabatic
approximation in compact binary inspirals”, Phys. Rev. D, 86, 044032 (2012). [![]() ![]() |
* | 306 | Mazur, P.O., “Proof of uniqueness of the Kerr–Newman black hole solution”, J. Phys. A: Math.
Gen., 15, 3173–3180 (1982). [![]() ![]() |
* | 307 | Mazur, P.O. and Mottola, E., “Gravitational Condensate Stars: An Alternative to Black Holes”,
arXiv, e-print, (2001). [![]() ![]() |
* | 308 | McWilliams, S.T., “Constraining the Braneworld with Gravitational Wave Observations”,
Phys. Rev. Lett., 104, 141601 (2010). [![]() ![]() ![]() |
* | 309 | Medved, A.J.M., Martin, D. and Visser, M., “Dirty black holes: quasinormal modes”, Class.
Quantum Grav., 21, 1393–1406 (2004). [![]() ![]() |
* | 310 | Medved, A.J.M., Martin, D. and Visser, M., “Dirty black holes: Quasinormal modes for
‘squeezed’ horizons”, Class. Quantum Grav., 21, 2393–2405 (2004). [![]() ![]() |
* | 311 | Mercuri, S. and Taveras, V., “Interaction of the Barbero-Immirzi field with matter and
pseudoscalar perturbations”, Phys. Rev. D, 80, 104007 (2009). [![]() ![]() |
* | 312 | Merritt, D., Alexander, T., Mikkola, S. and Will, C.M., “Testing properties of the galactic
center black hole using stellar orbits”, Phys. Rev. D, 81, 062002 (2010). [![]() ![]() |
* | 313 | Merritt, D., Alexander, T., Mikkola, S. and Will, C.M., “Stellar dynamics of extreme-mass-ratio
inspirals”, Phys. Rev. D, 84, 044024 (2011). [![]() ![]() ![]() |
* | 314 | Metropolis, N., “Summation of imprecise numbers”, Comput. Math. Appl., 6, 297–299 (1980).
[![]() |
* | 315 | Mirshekari, S. and Will, C.M., “Compact binary systems in scalar-tensor gravity: Equations
of motion to 2.5 post-Newtonian order”, Phys. Rev. D, 87, 084070 (2013). [![]() ![]() ![]() |
* | 316 | Mirshekari, S., Yunes, N. and Will, C.M., “Constraining Generic Lorentz Violation and the
Speed of the Graviton with Gravitational Waves”, Phys. Rev. D, 85, 024041 (2012). [![]() ![]() |
* | 317 | Mishra, C.K., Arun, K.G., Iyer, B.R. and Sathyaprakash, B.S., “Parametrized tests of
post-Newtonian theory using Advanced LIGO and Einstein Telescope”, Phys. Rev. D, 82,
064010 (2010). [![]() ![]() ![]() |
* | 318 | Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco,
1973). [![]() |
* | 319 | Molina, C., Pani, P., Cardoso, V. and Gualtieri, L., “Gravitational signature of Schwarzschild
black holes in dynamical Chern-Simons gravity”, Phys. Rev. D, 81, 124021 (2010). [![]() ![]() ![]() |
* | 320 | Mora, T. and Will, C.M., “Post-Newtonian diagnostic of quasiequilibrium binary configurations
of compact objects”, Phys. Rev. D, 69, 104021 (2004). [![]() ![]() |
* | 321 | Moser, J., “On Invariant Curves of Area-Preserving Mappings of an Annulus”, Nachr. Akad. Wiss. Goettingen II, Math.-Phys. Kl., 1962, 1–20 (1962). |
* | 322 | Moyal, J.E. and Bartlett, M.S., “Quantum mechanics as a statistical theory”, Proc. Cambridge
Philos. Soc., 45, 99–124 (1949). [![]() ![]() |
* | 323 | Nakao, K.-I., Harada, T., Shibata, M., Kawamura, S. and Nakamura, T., “Response of
interferometric detectors to scalar gravitational waves”, Phys. Rev. D, 63, 082001 (2001). [![]() ![]() ![]() |
* | 324 | Nelson, W., “Static solutions for fourth order gravity”, Phys. Rev. D, 82, 104026 (2010). [![]() ![]() ![]() |
* | 325 | Nelson, W., Ochoa, J. and Sakellariadou, M., “Constraining the Noncommutative Spectral
Action via Astrophysical Observations”, Phys. Rev. Lett., 105, 101602 (2010). [![]() ![]() |
* | 326 | Nelson, W., Ochoa, J. and Sakellariadou, M., “Gravitational Waves in the Spectral Action of
Noncommutative Geometry”, Phys. Rev. D, 82, 085021 (2010). [![]() ![]() |
* | 327 | Newman, E.T. and Janis, A.I., “Note on the Kerr Spinning-Particle Metric”, J. Math. Phys.,
6, 915–917 (1965). [![]() ![]() |
* | 328 | Ni, W.-T., “Solar-system tests of the inflation model with a Weyl term”, arXiv, e-print, (2012).
[![]() ![]() |
* | 329 | Nishizawa, A., Taruya, A., Hayama, K., Kawamura, S. and Sakagami, M.-A., “Probing
nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser
interferometers”, Phys. Rev. D, 79, 082002 (2009). [![]() ![]() ![]() |
* | 330 | Nishizawa, A., Taruya, A. and Kawamura, S., “Cosmological test of gravity with polarizations
of stochastic gravitational waves around 0.1–1 Hz”, Phys. Rev. D, 81, 104043 (2010). [![]() ![]() ![]() |
* | 331 | Nordtvedt Jr, K.L., “Equivalence Principle for Massive Bodies: II. Theory”, Phys. Rev., 169,
1017–1025 (1968). [![]() ![]() |
* | 332 | Nordtvedt Jr, K.L. and Will, C.M., “Conservation Laws and Preferred Frames in Relativistic
Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity”,
Astrophys. J., 177, 775–792 (1972). [![]() ![]() |
* | 333 | Novak, J., “Spherical neutron star collapse toward a black hole in a tensor-scalar theory of
gravity”, Phys. Rev. D, 57, 4789–4801 (1998). [![]() ![]() ![]() |
* | 334 | Novak, J. and Ibáñez, J.M., “Gravitational waves from the collapse and bounce of a
stellar core in tensor scalar gravity”, Astrophys. J., 533, 392–405 (2000). [![]() ![]() ![]() |
* | 335 | O’Connor, E. and Ott, C.D., “A new open-source code for spherically symmetric stellar
collapse to neutron stars and black holes”, Class. Quantum Grav., 27, 114103 (2010). [![]() ![]() |
* | 336 | Ohashi, A., Tagoshi, H. and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves
from a Compact Star Orbiting a Rotating Black Hole in Brans-Dicke Theory: Circular Orbit
Case”, Prog. Theor. Phys., 96, 713–727 (1996). [![]() |
* | 337 | Ostrogradski, M.V., “Mémoire sur les équations différentielles relatives au problème des isopérimètres”, Mem. Acad. St. Petersbourg, VI Ser., 4, 385–517 (1850). |
* | 338 | Palenzuela, C., Lehner, L. and Liebling, S.L., “Orbital dynamics of binary boson star systems”,
Phys. Rev. D, 77, 044036 (2008). [![]() ![]() |
* | 339 | Palenzuela, C., Olabarrieta, I., Lehner, L. and Liebling, S.L., “Head-on collisions of boson
stars”, Phys. Rev. D, 75, 064005 (2007). [![]() ![]() |
* | 340 | Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the
absence of an event horizon: Nonradial oscillations of a thin-shell gravastar”, Phys. Rev. D, 80,
124047 (2009). [![]() ![]() ![]() |
* | 341 | Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the
absence of an event horizon. II. Extreme mass ratio inspirals in the spacetime of a thin-shell
gravastar”, Phys. Rev. D, 81, 084011 (2010). [![]() ![]() ![]() |
* | 342 | Pani, P., Berti, E., Cardoso, V. and Read, J., “Compact stars in alternative theories of
gravity: Einstein-Dilaton-Gauss-Bonnet gravity”, Phys. Rev. D, 84, 104035 (2011). [![]() ![]() |
* | 343 | Pani, P. and Cardoso, V., “Are black holes in alternative theories serious astrophysical
candidates? The case for Einstein-Dilaton-Gauss-Bonnet black holes”, Phys. Rev. D, 79, 084031
(2009). [![]() ![]() |
* | 344 | Pani, P., Cardoso, V. and Gualtieri, L., “Gravitational waves from extreme mass-ratio
inspirals in dynamical Chern-Simons gravity”, Phys. Rev. D, 83, 104048 (2011). [![]() ![]() ![]() |
* | 345 | Pani, P., Macedo, C.F.B., Crispino, L.C.B. and Cardoso, V., “Slowly rotating black holes in
alternative theories of gravity”, Phys. Rev. D, 84, 087501 (2011). [![]() ![]() ![]() |
* | 346 | Paulos, M.F. and Tolley, A.J., “Massive Gravity Theories and limits of Ghost-free Bigravity
models”, J. High Energy Phys., 2012(09), 002 (2012). [![]() ![]() |
* | 347 | Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento,
1, 252–276 (1969). [![]() |
* | 348 | Perivolaropoulos, L., “PPN Parameter gamma and Solar System Constraints of Massive
Brans-Dicke Theories”, Phys. Rev. D, 81, 047501 (2010). [![]() ![]() |
* | 349 | Pilo, L., “Bigravity as a Tool for Massive Gravity”, in XXIst International Europhysics
Conference on High Energy Physics, Grenoble, Rhône-Alpes France, 21 – 27 July 2011,
Proceedings of Science, PoS(EPS-HEP2011)076, (SISSA, Trieste, 2011). URL (accessed 15
April 2013): ![]() |
* | 350 | Pitjeva, E.V., “Relativistic Effects and Solar Oblateness from Radar Observations of Planets
and Spacecraft”, Astron. Lett., 31, 340–349 (2005). [![]() ![]() |
* | 351 | Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. I.
Analytical results for the nonrotating case”, Phys. Rev. D, 47, 1497–1510 (1993). [![]() ![]() |
* | 352 | Poisson, E., A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, (Cambrdige
University Press, Cambridge; New York, 2004). [![]() ![]() |
* | 353 | Poisson, E. and Will, C.M., “Gravitational waves from inspiraling compact binaries: Parameter
estimation using second post-Newtonian wave forms”, Phys. Rev. D, 52, 848–855 (1995). [![]() ![]() |
* | 354 | Polchinski, J., String Theory. Vol. 1: An Introduction to the Bosonic String, Cambridge
Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York,
1998). [![]() |
* | 355 | Polchinski, J., String Theory. Vol. 2: Superstring Theory and Beyond, Cambridge Monographs
on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1998). [![]() ![]() |
* | 356 | Price, R.H., “Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and
gravitational perturbations”, Phys. Rev. D, 5, 2419–2438 (1972). [![]() ![]() |
* | 357 | Price, R.H., “Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin,
zero-rest-mass fields”, Phys. Rev. D, 5, 2439–2454 (1972). [![]() ![]() |
* | 358 | Psaltis, D., “Constraining Brans-Dicke Gravity with Accreting Millisecond Pulsars
in Ultracompact Binaries”, Astrophys. J., 688, 1282–1287 (2008). [![]() ![]() ![]() |
* | 359 | Psaltis, D., “Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic
Spectrum”, Living Rev. Relativity, 11, lrr-2008-9 (2008). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2008-9. |
* | 360 | Psaltis, D., Perrodin, D., Dienes, K.R. and Mocioiu, I., “Kerr Black Holes are Not Unique
to General Relativity”, Phys. Rev. Lett., 100, 091101 (2008). [![]() ![]() ![]() |
* | 361 | Punturo, M. et al., “The Einstein Telescope: a third-generation gravitational wave
observatory”, Class. Quantum Grav., 27, 194002 (2010). [![]() ![]() |
* | 362 | Reisenegger, A., Jofré, P. and Fernández, R., “Constraining a possible time-variation of the
gravitational constant through ‘gravitochemical heating’ of neutron stars”, Mem. Soc. Astron.
Ital., 80, 829–832 (2009). [![]() ![]() |
* | 363 | Robinson, D.C., “Uniqueness of the Kerr Black Hole”, Phys. Rev. Lett., 34, 905–906 (1975).
[![]() ![]() |
* | 364 | Rodriguez, C.L., Mandel, I. and Gair, J.R., “Verifying the no-hair property of massive compact
objects with intermediate-mass-ratio inspirals in advanced gravitational-wave detectors”, Phys.
Rev. D, 85, 062002 (2012). [![]() ![]() |
* | 365 | Rosen, N., “A theory of gravitation”, Ann. Phys. (N.Y.), 84, 455–473 (1974). [![]() ![]() |
* | 366 | Rovelli, C., Quantum Gravity, Cambridge Monographs on Mathematical Physics, (Cambridge
University Press, Cambridge; New York, 2004). [![]() |
* | 367 | Rover, C., Meyer, R. and Christensen, N., “Bayesian inference on compact binary inspiral
gravitational radiation signals in interferometric data”, Class. Quantum Grav., 23, 4895–4906
(2006). [![]() ![]() |
* | 368 | Ruffini, R. and Sasaki, M., “On a semi relativistic treatment of the gravitational radiation from
a mass thrusted into a black hole”, Prog. Theor. Phys., 66, 1627–1638 (1981). [![]() |
* | 369 | Ruiz, M., Degollado, J.C., Alcubierre, M., Núñez, D. and Salgado, M., “Induced scalarization
in boson stars and scalar gravitational radiation”, Phys. Rev. D, 86, 104044 (2012). [![]() ![]() |
* | 370 | Ryan, F.D., “Gravitational waves from the inspiral of a compact object into a massive,
axisymmetric body with arbitrary multipole moments”, Phys. Rev. D, 52, 5707–5718 (1995).
[![]() ![]() |
* | 371 | Ryan, F.D., “Accuracy of estimating the multipole moments of a massive body from the
gravitational waves of a binary inspiral”, Phys. Rev. D, 56, 1845–1855 (1997). [![]() ![]() |
* | 372 | Ryan, F.D., “Spinning boson stars with large self-interaction”, Phys. Rev. D, 55, 6081–6091
(1997). [![]() ![]() |
* | 373 | Sadeghian, L. and Will, C.M., “Testing the black hole no-hair theorem at the galactic center:
Perturbing effects of stars in the surrounding cluster”, Class. Quantum Grav., 28, 225029
(2011). [![]() ![]() |
* | 374 | Saijo, M., Shinkai, H.-A. and Maeda, K.-I., “Gravitational waves in Brans-Dicke theory:
Analysis by test particles around a Kerr black hole”, Phys. Rev. D, 56, 785–797 (1997). [![]() ![]() |
* | 375 | Salgado, M., Martínez del Río, D., Alcubierre, M. and Núñez, D., “Hyperbolicity of
scalar-tensor theories of gravity”, Phys. Rev. D, 77, 104010 (2008). [![]() ![]() |
* | 376 | Sampson, L., Cornish, N.J. and Yunes, N., “Gravitational wave tests of strong field general
relativity with binary inspirals: Realistic injections and optimal model selection”, Phys. Rev.
D, 87, 102001 (2013). [![]() ![]() ![]() |
* | 377 | Sathyaprakash, B.S. et al., “Scientific objectives of Einstein Telescope”, Class. Quantum Grav.,
29, 124013 (2012). [![]() ![]() |
* | 378 | Sazhin, M.V., “Opportunities for detecting ultralong gravitational waves”, Sov. Astron., 22,
36–38 (1978). [![]() |
* | 379 | Scharre, P.D. and Will, C.M., “Testing scalar tensor gravity using space gravitational wave
interferometers”, Phys. Rev. D, 65, 042002 (2002). [![]() ![]() ![]() |
* | 380 | Scheel, M.A., Shapiro, S.L. and Teukolsky, S.A., “Collapse to black holes in Brans-Dicke theory:
I. Horizon boundary conditions for dynamical spacetimes”, Phys. Rev. D, 51, 4208–4235 (1995).
[![]() ![]() ![]() |
* | 381 | Sefiedgar, A.S., Nozari, K. and Sepangi, H.R., “Modified dispersion relations in extra
dimensions”, Phys. Lett. B, 696, 119–123 (2011). [![]() ![]() ![]() |
* | 382 | Shen, H., Toki, H., Oyamatsu, K. and Sumiyoshi, K., “Relativistic equation of state of nuclear
matter for supernova and neutron star”, Nucl. Phys. A, 637, 435–450 (1998). [![]() ![]() ![]() |
* | 383 | Shen, H., Toki, H., Oyamatsu, K. and Sumiyoshi, K., “Relativistic Equation of State of Nuclear
Matter for Supernova Explosion”, Prog. Theor. Phys., 100, 1013–1031 (1998). [![]() ![]() ![]() |
* | 384 | Shibata, M., Nakao, K. and Nakamura, T., “Scalar type gravitational wave emission from
gravitational collapse in Brans-Dicke theory: Detectability by a laser interferometer”, Phys.
Rev. D, 50, 7304–7317 (1994). [![]() ![]() |
* | 385 | Shibata, M., Taniguchi, K. and Uryū, K., “Merger of binary neutron stars with realistic
equations of state in full general relativity”, Phys. Rev. D, 71, 084021 (2005). [![]() ![]() ![]() |
* | 386 | Shiiki, N. and Sawado, N., “Black holes with skyrme hair”, arXiv, e-print, (2005). [![]() ![]() |
* | 387 | Sivia, D.S. and Skilling, J., Data Analysis: A Bayesian Tutorial, (Oxford University Press,
Oxford; New York, 2006), 2nd edition. [![]() |
* | 388 | Smith, T.L., Erickcek, A.L., Caldwell, R.R. and Kamionkowski, M., “The Effects of
Chern-Simons gravity on bodies orbiting the Earth”, Phys. Rev. D, 77, 024015 (2008). [![]() ![]() |
* | 389 | Snyder, H.S., “Quantized Space-Time”, Phys. Rev., 71, 38–41 (1947). [![]() ![]() |
* | 390 | Sopuerta, C.F. and Yunes, N., “Extreme- and intermediate-mass ratio inspirals in
dynamical Chern-Simons modified gravity”, Phys. Rev. D, 80, 064006 (2009). [![]() ![]() ![]() |
* | 391 | Sota, Y., Suzuki, S. and Maeda, K.-I., “Chaos in static axisymmetric spacetimes: I. Vacuum
case”, Class. Quantum Grav., 13, 1241–1260 (1996). [![]() ![]() ![]() |
* | 392 | Sota, Y., Suzuki, S. and Maeda, K.-I., “Chaos in Static Axisymmetric Spacetimes: II.
non-vacuum case”, arXiv, e-print, (1996). [![]() ![]() |
* | 393 | Sotani, H., “Slowly Rotating Relativistic Stars in Scalar-Tensor Gravity”, Phys. Rev. D, 86,
124036 (2012). [![]() ![]() |
* | 394 | Sotani, H. and Kokkotas, K.D., “Probing strong-field scalar-tensor gravity with gravitational
wave asteroseismology”, Phys. Rev. D, 70, 084026 (2004). [![]() ![]() |
* | 395 | Sotani, H. and Kokkotas, K.D., “Stellar oscillations in scalar-tensor theory of gravity”, Phys.
Rev. D, 71, 124038 (2005). [![]() ![]() |
* | 396 | Sotiriou, T.P., “f(R) gravity and scalar-tensor theory”, Class. Quantum Grav., 23, 5117–5128
(2006). [![]() ![]() |
* | 397 | Sotiriou, T.P. and Apostolatos, T.A., “Tracing the geometry around a massive, axisymmetric
body to measure, through gravitational waves, its mass moments and electromagnetic
moments”, Phys. Rev. D, 71, 044005 (2005). [![]() ![]() |
* | 398 | Sotiriou, T.P. and Faraoni, V., “Black Holes in Scalar-Tensor Gravity”, Phys. Rev. Lett., 108,
081103 (2012). [![]() ![]() ![]() |
* | 399 | Stavridis, A. and Will, C.M., “Effect of spin precession on bounding the mass of the graviton
using gravitational waves from massive black hole binaries”, J. Phys.: Conf. Ser., 228, 012049
(2010). [![]() ![]() |
* | 400 | Stein, L.C. and Yunes, N., “Effective gravitational wave stress-energy tensor in alternative
theories of gravity”, Phys. Rev. D, 83, 064038 (2011). [![]() ![]() ![]() |
* | 401 | Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C. and Herlt, E., Exact Solutions
of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge
University Press, Cambridge; New York, 2003), 2nd edition. [![]() ![]() |
* | 402 | Swendsen, R.H. and Wang, J.-S., “Replica Monte Carlo simulation of spin glasses”, Phys. Rev.
Lett., 57, 2607–2609 (1986). [![]() ![]() |
* | 403 | Szabo, R.J., “Quantum gravity, field theory and signatures of noncommutative spacetime”,
Gen. Relativ. Gravit., 42, 1–29 (2010). [![]() ![]() ![]() |
* | 404 | Talmadge, C., Berthias, J.-P., Hellings, R.W. and Standish, E.M., “Model-independent
constraints on possible modifications of Newtonian gravity”, Phys. Rev. Lett., 61, 1159–1162
(1988). [![]() ![]() |
* | 405 | Tanaka, T., “Classical Black Hole Evaporation in Randall-Sundrum Infinite Brane World”,
Prog. Theor. Phys. Suppl., 148, 307–316 (2003). [![]() ![]() ![]() |
* | 406 | Taveras, V. and Yunes, N., “Barbero-Immirzi parameter as a scalar field: K-inflation from loop
quantum gravity?”, Phys. Rev. D, 78, 064070 (2008). [![]() ![]() |
* | 407 | Thorne, K.S., “Multipole Expansions of Gravitational Radiation”, Rev. Mod. Phys., 52,
299–339 (1980). [![]() ![]() |
* | 408 | Thorne, K.S. and Dykla, J.J., “Black Holes in the Dicke-Brans-Jordan Theory of Gravity”,
Astrophys. J. Lett., 166, L35–L38 (1971). [![]() ![]() |
* | 409 | Torii, T. and Maeda, K.-I., “Stability of a dilatonic black hole with a Gauss-Bonnet term”,
Phys. Rev. D, 58, 084004 (1998). [![]() ![]() |
* | 410 | Tsuchida, T., Kawamura, G. and Watanabe, K., “A Maximum mass-to-size ratio in
scalar tensor theories of gravity”, Prog. Theor. Phys., 100, 291–313 (1998). [![]() ![]() |
* | 411 | Uzan, J.-P., “The fundamental constants and their variation: observational and theoretical
status”, Rev. Mod. Phys., 75, 403–455 (2003). [![]() ![]() ![]() |
* | 412 | Vacaru, S.I., “Modified Dispersion Relations in Hořava–Lifshitz Gravity and Finsler Brane
Models”, Gen. Relativ. Gravit., 44, 1015–1042 (2012). [![]() ![]() |
* | 413 | Vainshtein, A.I., “To the problem of nonvanishing gravitation mass”, Phys. Lett. B, 39, 393–394
(1972). [![]() ![]() |
* | 414 | Vallisneri, M., “Use and abuse of the Fisher information matrix in the assessment of
gravitational-wave parameter-estimation prospects”, Phys. Rev. D, 77, 042001 (2008). [![]() ![]() ![]() |
* | 415 | Vallisneri, M., “Beyond the Fisher-Matrix Formalism: Exact Sampling Distributions of the
Maximum-Likelihood Estimator in Gravitational-Wave Parameter Estimation”, Phys. Rev.
Lett., 107, 191104 (2011). [![]() ![]() |
* | 416 | Vallisneri, M., “Testing general relativity with gravitational waves: A reality check”, Phys. Rev.
D, 86, 082001 (2012). [![]() ![]() ![]() |
* | 417 | Vallisneri, M. and Yunes, N., “Stealth bias in gravitational-wave parameter estimation”, Phys.
Rev. D, 87, 102002 (2013). [![]() ![]() ![]() |
* | 418 | van Dam, H. and Veltman, M.J.G., “Massive and mass-less Yang-Mills and gravitational fields”,
Nucl. Phys. B, 22, 397–411 (1970). [![]() ![]() |
* | 419 | van der Sluys, M., Raymond, V., Mandel, I., Röver, C., Christensen, N., Kalogera, V., Meyer,
R. and Vecchio, A., “Parameter estimation of spinning binary inspirals using Markov chain
Monte Carlo”, Class. Quantum Grav., 25, 184011 (2008). [![]() ![]() ![]() |
* | 420 | Veitch, J. and Vecchio, A., “Assigning confidence to inspiral gravitational wave candidates
with Bayesian model selection”, Class. Quantum Grav., 25, 184010 (2008). [![]() ![]() ![]() |
* | 421 | Vigeland, S.J., “Multipole moments of bumpy black holes”, Phys. Rev. D, 82, 104041 (2010).
[![]() ![]() |
* | 422 | Vigeland, S.J. and Hughes, S.A., “Spacetime and orbits of bumpy black holes”, Phys. Rev. D,
81, 024030 (2010). [![]() ![]() |
* | 423 | Vigeland, S.J., Yunes, N. and Stein, L., “Bumpy black holes in alternate theories of gravity”,
Phys. Rev. D, 83, 104027 (2011). [![]() ![]() ![]() |
* | 424 | Visser, M., “Mass for the graviton”, Gen. Relativ. Gravit., 30, 1717–1728 (1998). [![]() ![]() |
* | 425 | Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [![]() ![]() |
* | 426 | Wald, R., “It is Not Easy to Fool Mother Nature With a Modified Theory of Gravity”, Workshop on Tests of Gravity and Gravitational Physics, Cleveland, Ohio, May 19 – 21, 2009, conference paper, (2009). |
* | 427 | Weinberg, S., “The cosmological constant problem”, Rev. Mod. Phys., 61, 1–23 (1989). [![]() ![]() |
* | 428 | Weinberg, S., The Quantum Theory of Fields. Vol. 2: Modern Applications, (Cambridge
University Press, Cambridge; New York, 1996). [![]() |
* | 429 | Weinberg, S., “Effective Field Theory for Inflation”, Phys. Rev. D, 77, 123541 (2008). [![]() ![]() ![]() |
* | 430 | Wetterich, C., “Cosmologies with variable Newton’s ‘constant”’, Nucl. Phys. B, 302, 645–667
(1988). [![]() ![]() |
* | 431 | Wex, N. and Kopeikin, S., “Frame Dragging and Other Precessional Effects in Black Hole
Pulsar Binaries”, Astrophys. J., 514, 388–401 (1999). [![]() ![]() |
* | 432 | Will, C.M., “Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized
Post-Newtonian Hydrodynamics, and the Nordtvedt Effect”, Astrophys. J., 163, 611–628
(1971). [![]() ![]() |
* | 433 | Will, C.M., “Relativistic Gravity tn the Solar System. III. Experimental Disproof of a Class of
Linear Theories of Gravitation”, Astrophys. J., 185, 31–42 (1973). [![]() ![]() |
* | 434 | Will, C.M., “Gravitational radiation from binary systems in alternative metric theories of
gravity: Dipole radiation and the binary pulsar”, Astrophys. J., 214, 826–839 (1977). [![]() ![]() |
* | 435 | Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press,
Cambridge; New York, 1993), 2nd edition. [![]() |
* | 436 | Will, C.M., “Testing scalar-tensor gravity with gravitational wave observations of inspiraling
compact binaries”, Phys. Rev. D, 50, 6058–6067 (1994). [![]() ![]() |
* | 437 | Will, C.M., “Bounding the mass of the graviton using gravitational-wave observations
of inspiralling compact binaries”, Phys. Rev. D, 57, 2061–2068 (1998). [![]() ![]() ![]() |
* | 438 | Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev.
Relativity, 9, lrr-2006-3 (2006). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2006-3. |
* | 439 | Will, C.M. and Nordtvedt Jr, K.L., “Conservation Laws and Preferred Frames in Relativistic
Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism”, Astrophys. J., 177,
757–774 (1972). [![]() ![]() |
* | 440 | Will, C.M. and Yunes, N., “Testing alternative theories of gravity using LISA”, Class. Quantum
Grav., 21, 4367–4381 (2004). [![]() ![]() ![]() |
* | 441 | Will, C.M. and Zaglauer, H.W., “Gravitational radiation, close binary systems, and the
Brans–Dicke theory of gravity”, Astrophys. J., 346, 366–377 (1989). [![]() ![]() |
* | 442 | Williams, J.G., Turyshev, S.G. and Boggs, D.H., “Progress in Lunar Laser Ranging Tests of
Relativistic Gravity”, Phys. Rev. Lett., 93, 261101 (2004). [![]() ![]() ![]() |
* | 443 | Woodard, R.P., “Avoiding Dark Energy with 1/R Modifications of Gravity”, in
Papantonopoulos, L., ed., The Invisible Universe: Dark Matter and Dark Energy, Lecture
Notes in Physics, 720, 14, pp. 403–433, (Springer, Berlin; New York, 2007). [![]() ![]() ![]() |
* | 444 | Yagi, K., “Gravitational wave observations of galactic intermediate-mass black hole binaries
with DECIGO path finder”, Class. Quantum Grav., 29, 075005 (2012). [![]() ![]() ![]() |
* | 445 | Yagi, K., “New constraint on scalar Gauss-Bonnet gravity and a possible explanation for the
excess of the orbital decay rate in a low-mass x-ray binary”, Phys. Rev. D, 86, 081504 (2012).
[![]() ![]() ![]() |
* | 446 | Yagi, K., “Scientific Potential of DECIGO Pathfinder and Testing GR with Space-Borne
Gravitational Wave Interferometers”, Int. J. Mod. Phys. D, 22, 1341013 (2013). [![]() ![]() ![]() |
* | 447 | Yagi, K., Stein, L.C., Yunes, N. and Tanaka, T., “Post-Newtonian, quasicircular binary inspirals
in quadratic modified gravity”, Phys. Rev. D, 85, 064022 (2012). [![]() ![]() ![]() |
* | 448 | Yagi, K., Stein, L.C., Yunes, N. and Tanaka, T., “Isolated and Binary Neutron Stars
in Dynamical Chern-Simons Gravity”, Phys. Rev. D, 87, 084058 (2013). [![]() ![]() ![]() |
* | 449 | Yagi, K., Tanahashi, N. and Tanaka, T., “Probing the size of extra dimension with gravitational
wave astronomy”, Phys. Rev. D, 83, 084036 (2011). [![]() ![]() ![]() |
* | 450 | Yagi, K. and Tanaka, T., “Constraining alternative theories of gravity by gravitational waves
from precessing eccentric compact binaries with LISA”, Phys. Rev. D, 81, 064008 (2010). [![]() ![]() ![]() |
* | 451 | Yagi, K. and Tanaka, T., “DECIGO/BBO as a Probe to Constrain Alternative Theories of
Gravity”, Prog. Theor. Phys., 123, 1069–1078 (2010). [![]() ![]() ![]() |
* | 452 | Yagi, K. and Yunes, N., “I-Love-Q relations in neutron stars and their applications to
astrophysics, gravitational waves, and fundamental physics”, Phys. Rev. D, 88, 023009 (2013).
[![]() ![]() ![]() |
* | 453 | Yagi, K. and Yunes, N., “I-Love-Q: Unexpected Universal Relations for Neutron Stars and
Quark Stars”, Science, 341, 365–368 (2013). [![]() ![]() ![]() |
* | 454 | Yagi, K., Yunes, N. and Tanaka, T., “Gravitational Waves from Quasicircular Black-Hole
Binaries in Dynamical Chern-Simons Gravity”, Phys. Rev. Lett., 109, 251105 (2012). [![]() ![]() ![]() |
* | 455 | Yagi, K., Yunes, N. and Tanaka, T., “Slowly Rotating Black Holes in Dynamical Chern-Simons
Gravity: Deformation Quadratic in the Spin”, Phys. Rev. D, 86, 044037 (2012). [![]() ![]() ![]() |
* | 456 | Yunes, N., “Gravitational Wave Modelling of Extreme Mass Ratio Inspirals and the
Effective-One-Body Approach”, GW Notes, 2, 3–47 (2009). [![]() ![]() |
* | 457 | Yunes, N., Arun, K.G., Berti, E. and Will, C.M., “Post-Circular Expansion of Eccentric Binary
Inspirals: Fourier-Domain Waveforms in the Stationary Phase Approximation”, Phys. Rev. D,
80, 084001 (2009). [![]() ![]() |
* | 458 | Yunes, N., Buonanno, A., Hughes, S.A., Miller, M.C. and Pan, Y., “Modeling Extreme Mass
Ratio Inspirals within the Effective-One-Body Approach”, Phys. Rev. Lett., 104, 091102 (2010).
[![]() ![]() |
* | 459 | Yunes, N., Buonanno, A., Hughes, S.A., Pan, Y., Barausse, E., Miller, M.C. and Throwe,
W., “Extreme mass-ratio inspirals in the effective-one-body approach: Quasicircular, equatorial
orbits around a spinning black hole”, Phys. Rev. D, 83, 044044 (2011). [![]() ![]() |
* | 460 | Yunes, N. and Finn, L.S., “Constraining effective quantum gravity with LISA”, J. Phys.: Conf.
Ser., 154, 012041 (2009). [![]() ![]() ![]() |
* | 461 | Yunes, N. and Hughes, S.A., “Binary pulsar constraints on the parameterized post-Einsteinian
framework”, Phys. Rev. D, 82, 082002 (2010). [![]() ![]() ![]() |
* | 462 | Yunes, N., Kocsis, B., Loeb, A. and Haiman, Z., “Imprint of Accretion Disk-Induced Migration
on Gravitational Waves from Extreme Mass Ratio Inspirals”, Phys. Rev. Lett., 107, 171103
(2011). [![]() ![]() ![]() |
* | 463 | Yunes, N., Miller, M.C. and Thornburg, J., “Effect of massive perturbers on extreme
mass-ratio inspiral waveforms”, Phys. Rev. D, 83, 044030 (2011). [![]() ![]() ![]() |
* | 464 | Yunes, N., O’Shaughnessy, R., Owen, B.J. and Alexander, S., “Testing gravitational parity
violation with coincident gravitational waves and short gamma-ray bursts”, Phys. Rev. D, 82,
064017 (2010). [![]() ![]() |
* | 465 | Yunes, N., Pani, P. and Cardoso, V., “Gravitational waves from quasicircular extreme
mass-ratio inspirals as probes of scalar-tensor theories”, Phys. Rev. D, 85, 102003 (2012). [![]() ![]() ![]() |
* | 466 | Yunes, N. and Pretorius, F., “Dynamical Chern-Simons modified gravity: Spinning black
holes in the slow-rotation approximation”, Phys. Rev. D, 79, 084043 (2009). [![]() ![]() ![]() |
* | 467 | Yunes, N. and Pretorius, F., “Fundamental theoretical bias in gravitational wave astrophysics
and the parameterized post-Einsteinian framework”, Phys. Rev. D, 80, 122003 (2009). [![]() ![]() ![]() |
* | 468 | Yunes, N., Pretorius, F. and Spergel, D., “Constraining the evolutionary history of Newton’s
constant with gravitational wave observations”, Phys. Rev. D, 81, 064018 (2010). [![]() ![]() ![]() |
* | 469 | Yunes, N., Psaltis, D., Özel, F. and Loeb, A., “Constraining parity violation in gravity with
measurements of neutron-star moments of inertia”, Phys. Rev. D, 81, 064020 (2010). [![]() ![]() ![]() |
* | 470 | Yunes, N. and Sopuerta, C.F., “Perturbations of Schwarzschild black holes in Chern-Simons
modified gravity”, Phys. Rev. D, 77, 064007 (2008). [![]() ![]() ![]() |
* | 471 | Yunes, N. and Sopuerta, C.F., “Testing Effective Quantum Gravity with Gravitational Waves
from Extreme Mass Ratio Inspirals”, J. Phys.: Conf. Ser., 228, 012051 (2010). [![]() ![]() |
* | 472 | Yunes, N. and Spergel, D.N., “Double-binary-pulsar test of dynamical Chern-Simons modified
gravity”, Phys. Rev. D, 80, 042004 (2009). [![]() ![]() ![]() |
* | 473 | Yunes, N. and Stein, L.C., “Nonspinning black holes in alternative theories of gravity”, Phys.
Rev. D, 83, 104002 (2011). [![]() ![]() ![]() |
* | 474 | Zaglauer, H.W., “Neutron stars and gravitational scalars”, Astrophys. J., 393, 685–696 (1992).
[![]() |
* | 475 | Zakharov, V.I., “Linearized gravitation theory and the graviton mass”, JETP Lett., 12, 312
(1970). [![]() |