Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 063, 16 pages      arXiv:1902.00598      https://doi.org/10.3842/SIGMA.2019.063

Dynamic Equivalence of Control Systems and Infinite Permutation Matrices

Jeanne N. Clelland a, Yuhao Hu a and Matthew W. Stackpole b
a) Department of Mathematics, 395 UCB, University of Colorado, Boulder, CO 80309-0395, USA
b) Maxar Technologies, 1300 W. 120th Ave, Westminster, CO 80234, USA

Received February 05, 2019, in final form August 20, 2019; Published online August 26, 2019

Abstract
To each dynamic equivalence of two control systems is associated an infinite permutation matrix. We investigate how such matrices are related to the existence of dynamic equivalences.

Key words: dynamic equivalence; control systems.

pdf (410 kb)   tex (20 kb)  

References

  1. Anderson R.L., Ibragimov N.H., Lie-Bäcklund transformations in applications, SIAM Studies in Applied Mathematics, Vol. 1, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1979.
  2. Aranda-Bricaire E., Moog C.H., Pomet J.-B., Infinitesimal Brunovsk'y form for nonlinear systems with applications to dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions (Warsaw, 1993), Banach Center Publ., Vol. 32, Polish Acad. Sci. Inst. Math., Warsaw, 1995, 19-33.
  3. Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior differential systems, Mathematical Sciences Research Institute Publications, Vol. 18, Springer-Verlag, New York, 1991.
  4. Cartan E., Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes, Bull. Soc. Math. France 42 (1914), 12-48.
  5. Chetverikov V.N., Invertible linear ordinary differential operators, J. Geom. Phys. 113 (2017), 10-27.
  6. Fliess M., Lévine J., Martin P., Rouchon P., A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems, IEEE Trans. Automat. Control 44 (1999), 922-937.
  7. Jakubczyk B., Equivalence of differential equations and differential algebras, Tatra Mt. Math. Publ. 4 (1994), 125-130.
  8. Krasil'shchik I.S., Lychagin V.V., Vinogradov A.M., Geometry of jet spaces and nonlinear partial differential equations, Advanced Studies in Contemporary Mathematics, Vol. 1, Gordon and Breach Science Publishers, New York, 1986.
  9. Lévine J., On necessary and sufficient conditions for differential flatness, Appl. Algebra Engrg. Comm. Comput. 22 (2011), 47-90, arXiv:math.OC/0605405.
  10. Martin P., Murray R.M., Rouchon P., Flat systems, equivalence and feedback, in Advances in the Control of Nonlinear Systems (Murcia, 2000), Lect. Notes Control Inf. Sci., Vol. 264, Springer, London, 2001, 5-32.
  11. Nicolau F., Respondek W., Flatness of multi-input control-affine systems linearizable via one-fold prolongation, SIAM J. Control Optim. 55 (2017), 3171-3203.
  12. Pomet J.-B., A differential geometric setting for dynamic equivalence and dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions (Warsaw, 1993), Banach Center Publ., Vol. 32, Polish Acad. Sci. Inst. Math., Warsaw, 1995, 319-339.
  13. Sluis W.M., Absolute equivalence and its applications to control theory, Ph.D. Thesis, University of Waterloo, 1992.
  14. Stackpole M.W., Dynamic equivalence of control systems via infinite prolongation, Asian J. Math. 17 (2013), 653-688, arXiv:1106.5437.

Previous article  Next article  Contents of Volume 15 (2019)