Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 064, 22 pages      arXiv:1903.01228      https://doi.org/10.3842/SIGMA.2019.064

Lagrangian Grassmannians and Spinor Varieties in Characteristic Two

Bert van Geemen a and Alessio Marrani bc
a) Dipartimento di Matematica, Università di Milano, Via Saldini 50, I-20133 Milano, Italy
b) Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89A, I-00184, Roma, Italy
c) Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, and INFN, sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

Received March 08, 2019, in final form August 21, 2019; Published online August 27, 2019

Abstract
The vector space of symmetric matrices of size $n$ has a natural map to a projective space of dimension $2^n-1$ given by the principal minors. This map extends to the Lagrangian Grassmannian ${\rm LG}(n,2n)$ and over the complex numbers the image is defined, as a set, by quartic equations. In case the characteristic of the field is two, it was observed that, for $n=3,4$, the image is defined by quadrics. In this paper we show that this is the case for any $n$ and that moreover the image is the spinor variety associated to ${\rm Spin}(2n+1)$. Since some of the motivating examples are of interest in supergravity and in the black-hole/qubit correspondence, we conclude with a brief examination of other cases related to integral Freudenthal triple systems over integral cubic Jordan algebras.

Key words: Lagrangian Grassmannian; spinor variety; characteristic two; Freudenthal triple system.

pdf (473 kb)   tex (32 kb)  

References

  1. Bellucci S., Ferrara S., Günaydin M., Marrani A., Charge orbits of symmetric special geometries and attractors, Internat. J. Modern Phys. A 21 (2006), 5043-5097, arXiv:hep-th/0606209.
  2. Borsten L., Dahanayake D., Duff M.J., Ebrahim H., Rubens W., Black holes, qubits and octonions, Phys. Rep. 471 (2009), 113-219, arXiv:0809.4685.
  3. Borsten L., Dahanayake D., Duff M.J., Rubens W., Black holes admitting a Freudenthal dual, Phys. Rev. D 80 (2009), 026003, 28 pages, arXiv:0903.5517.
  4. Borsten L., Duff M.J., Ferrara S., Marrani A., Rubens W., Small orbits, Phys. Rev. D 85 (2012), 086002, 27 pages, arXiv:1108.0424.
  5. Borsten L., Duff M.J., Lévay P., The black-hole/qubit correspondence: an up-to-date review, Classical Quantum Gravity 29 (2012), 224008, 80 pages, arXiv:1206.3166.
  6. Brown R.B., Groups of type $E_{7}$, J. Reine Angew. Math. 236 (1969), 79-102.
  7. Cerchiai B.L., Ferrara S., Marrani A., Zumino B., Duality, entropy, and ADM mass in supergravity, Phys. Rev. D 79 (2009), 125010, 23 pages, arXiv:0902.3973.
  8. Chevalley C.C., The algebraic theory of spinors, Columbia University Press, New York, 1954.
  9. Conrad B., Gabber O., Prasad G., Pseudo-reductive groups, 2nd ed., New Mathematical Monographs, Vol. 26, Cambridge University Press, Cambridge, 2015.
  10. Duff M.J., String triality, black hole entropy, and Cayley's hyperdeterminant, Phys. Rev. D 76 (2007), 025017, 4 pages, arXiv:hep-th/0601134.
  11. Ferrara S., Gimon E.G., Kallosh R., Magic supergravities, $N=8$ black hole composites, Phys. Rev. D 74 (2006), 125018, 18 pages, arXiv:hep-th/0606211.
  12. Ferrara S., Günaydin M., Orbits of exceptional groups, duality and BPS states in string theory, Internat. J. Modern Phys. A 13 (1998), 2075-2088, arXiv:hep-th/9708025.
  13. Ferrara S., Kallosh R., Marrani A., Degeneration of groups of type $E_7$ and minimal coupling in supergravity, J. High Energy Phys. 2012 (2012), no. 6, 074, 47 pages, arXiv:1202.1290.
  14. Ferrara S., Marrani A., On the moduli space of non-BPS attractors for ${\mathcal N}=2$ symmetric manifolds, Phys. Lett. B 652 (2007), 111-117, arXiv:0706.1667.
  15. Freudenthal H., Sur le groupe exceptionnel $E_7$, Nederl. Akad. Wetensch. Proc. Ser. A. 15 (1953), 81-89.
  16. van Geemen B., Schottky-Jung relations and vectorbundles on hyperelliptic curves, Math. Ann. 281 (1988), 431-449.
  17. Gow R., Contraction of exterior powers in characteristic $2$ and the spin module, Geom. Dedicata 64 (1997), 283-295.
  18. Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978.
  19. Holtz O., Sturmfels B., Hyperdeterminantal relations among symmetric principal minors, J. Algebra 316 (2007), 634-648, arXiv:math.RA/0604374.
  20. Holweck F., Geometric constructions over ${\mathbb C}$ and ${\mathbb F}_2$ for quantum information, in Quantum Physics and Geometry, Lect. Notes Unione Mat. Ital., Vol. 25, Springer, Cham, 2019, 87-124, arXiv:1810.04258.
  21. Holweck F., Saniga M., Lévay P., A notable relation between $N$-qubit and $2^{N-1}$-qubit Pauli groups via binary ${\rm LGr}(N,2N)$, SIGMA 10 (2014), 041, 16 pages, arXiv:1311.2408.
  22. Iliev A., Ranestad K., Geometry of the Lagrangian Grassmannian ${\bf LG}(3,6)$ with applications to Brill-Noether loci, Michigan Math. J. 53 (2005), 383-417, arXiv:math.AG/0209169.
  23. Jordan P., von Neumann J., Wigner E., On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. 35 (1934), 29-64.
  24. Kallosh R., Linde A., Strings, black holes, and quantum information, Phys. Rev. D 73 (2006), 104033, 15 pages, arXiv:hep-th/0602061.
  25. Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, Vol. 129, Cambridge University Press, Cambridge, 1990.
  26. Krutelevich S., Jordan algebras, exceptional groups, and Bhargava composition, J. Algebra 314 (2007), 924-977, arXiv:math.NT/0411104.
  27. Landsberg J.M., Manivel L., The projective geometry of Freudenthal's magic square, J. Algebra 239 (2001), 477-512, arXiv:math.AG/9908039.
  28. Lévay P., Holweck F., Finite geometric toy model of spacetime as an error correcting code, Phys. Rev. D 99 (2019), 086015, 49 pages, arXiv:1812.07242.
  29. Manivel L., On spinor varieties and their secants, SIGMA 5 (2009), 078, 22 pages, arXiv:0904.0565.
  30. Manivel L., Michałek M., Secants of minuscule and cominuscule minimal orbits, Linear Algebra Appl. 481 (2015), 288-312, arXiv:1401.1956.
  31. Milne J.S., Algebraic groups: the theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, Vol. 170, Cambridge University Press, Cambridge, 2017.
  32. Oeding L., Set-theoretic defining equations of the tangential variety of the Segre variety, J. Pure Appl. Algebra 215 (2011), 1516-1527, arXiv:0911.5276.
  33. Oeding L., Set-theoretic defining equations of the variety of principal minors of symmetric matrices, Algebra Number Theory 5 (2011), 75-109, arXiv:0809.4236.
  34. Procesi C., Lie groups: an approach through invariants and representations, Universitext, Springer, New York, 2007.
  35. Ranestad K., Schreyer F.-O., Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147-181, arXiv:math.AG/9801110.
  36. Russo F., Projective duality and non-degenerated symplectic Monge-Ampère equations, in Geometry of Lagrangian Grassmannians and Nonlinear PDEs, Banach Center Publ., Vol. 117, Polish Acad. Sci. Inst. Math., Warsaw, 2019, 113-144.
  37. Seshadri C.S., Geometry of $G/P$. I. Theory of standard monomials for minuscule representations, in C.P. Ramanujam - a tribute, Tata Inst. Fund. Res. Studies in Math., Vol. 8, Springer, Berlin - New York, 1978, 207-239.
  38. Steinberg R., The isomorphism and isogeny theorems for reductive algebraic groups, J. Algebra 216 (1999), 366-383.
  39. Sturmfels B., Velasco M., Blow-ups of ${\mathbb P}^{n-3}$ at $n$ points and spinor varieties, J. Commut. Algebra 2 (2010), 223-244, arXiv:0906.5096.
  40. Wilson R.A., A quaternionic construction of $E_7$, Proc. Amer. Math. Soc. 142 (2014), 867-880.
  41. Zak F.L., Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, Vol. 127, Amer. Math. Soc., Providence, RI, 1993.

Previous article  Next article  Contents of Volume 15 (2019)