References
* | 1 | Abel, S. and Santiago, J., “Constraining the string scale: from Planck to weak and back again”, J. Phys. G: Nucl. Part. Phys., 30, R83–R111 (2004). [DOI], [arXiv:hep-ph/0404237]. |
* | 2 | Adler, R.J., Chen, P. and Santiago, D.I., “The Generalized Uncertainty Principle and Black Hole Remnants”, Gen. Relativ. Gravit., 33, 2101–2108 (2001). [DOI], [arXiv:gr-qc/0106080 [gr-qc]]. |
* | 3 | Adler, R.J. and Santiago, D.I., “On gravity and the uncertainty principle”, Mod. Phys. Lett. A, 14, 1371 (1999). [DOI], [arXiv:gr-qc/9904026]. |
* | 4 | Agostini, A., Amelino-Camelia, G., Arzano, M., Marcianò, A. and Altair Tacchi, R., “Generalizing the Noether theorem for Hopf-algebra spacetime symmetries”, Mod. Phys. Lett. A, 22, 1779–1786 (2007). [DOI], [ADS], [arXiv:hep-th/0607221 [hep-th]]. |
* | 5 | Ahluwalia-Khalilova, D.V., “Operational indistinguishability of doubly special relativities from special relativity”, arXiv, e-print, (2002). [arXiv:gr-qc/0212128 [gr-qc]]. |
* | 6 | Ali, A.F., “Minimal Length in Quantum Gravity, Equivalence Principle and Holographic Entropy Bound”, Class. Quantum Grav., 28, 065013 (2011). [DOI], [arXiv:1101.4181 [hep-th]]. |
* | 7 | Ali, A.F., Das, S. and Vagenas, E.C., “Discreteness of Space from the Generalized Uncertainty Principle”, Phys. Lett. B, 678, 497–499 (2009). [DOI], [arXiv:0906.5396 [hep-th]]. |
* | 8 | Ali, A.F., Das, S. and Vagenas, E.C., “A proposal for testing quantum gravity in the lab”, Phys. Rev. D, 84, 044013 (2011). [DOI], [arXiv:1107.3164 [hep-th]]. |
* | 9 | Amati, D., Ciafaloni, M. and Veneziano, G., “Superstring Collisions at Planckian Energies”, Phys. Lett. B, 197, 81–88 (1987). [DOI]. |
* | 10 | Amati, D., Ciafaloni, M. and Veneziano, G., “Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions”, Int. J. Mod. Phys. A, 3, 1615–1661 (1988). [DOI]. |
* | 11 | Amati, D., Ciafaloni, M. and Veneziano, G., “Higher order gravitational deflection and soft bremsstrahlung in Planckian energy superstring collisions”, Nucl. Phys. B, 347, 550–580 (1990). [DOI]. |
* | 12 | Amati, D., Ciafaloni, M. and Veneziano, G., “Towards an S-matrix description of gravitational collapse”, J. High Energy Phys., 2008(02), 049 (2008). [DOI], [arXiv:0712.1209 [hep-th]]. |
* | 13 | Ambjørn, J., Jurkiewicz, J. and Loll, R., “Causal dynamical triangulations and the quest for quantum gravity”, in Murugan, J., Weltman, A. and Ellis, G.F.R., eds., Foundations of Space and Time: Reflections on Quantum Gravity, pp. 321–337, (Cambridge University Press, Cambridge; New York, 2012). [arXiv:1004.0352 [hep-th]]. |
* | 14 | Amelino-Camelia, G., “Testable scenario for relativity with minimum length”, Phys. Lett. B, 510, 255–263 (2001). [DOI], [arXiv:hep-th/0012238 [hep-th]]. |
* | 15 | Amelino-Camelia, G., “Doubly special relativity”, Nature, 418, 34–35 (2002). [DOI], [arXiv:gr-qc/0207049 [gr-qc]]. |
* | 16 | Amelino-Camelia, G., “Doubly-special relativity: First results and key open problems”, Int. J. Mod. Phys. D, 11, 1643–1669 (2002). [DOI], [arXiv:gr-qc/0210063 [gr-qc]]. |
* | 17 | Amelino-Camelia, G., “Kinematical solution of the UHE-cosmic-ray puzzle without a preferred class of inertial observers”, Int. J. Mod. Phys. D, 12, 1211–1226 (2003). [DOI], [arXiv:astro-ph/0209232 [astro-ph]]. |
* | 18 | Amelino-Camelia, G., “Planck-scale Lorentz-symmetry test theories”, arXiv, e-print, (2004). [arXiv:astro-ph/0410076 [astro-ph]]. |
* | 19 | Amelino-Camelia, G., “Quantum Gravity Phenomenology”, arXiv, e-print, (2008). [arXiv:0806.0339 [gr-qc]]. |
* | 20 | Amelino-Camelia, G., “Doubly-Special Relativity: Facts, Myths and Some Key Open Issues”, Symmetry, 2, 230–271 (2010). [DOI], [arXiv:1003.3942 [gr-qc]]. |
* | 21 | Amelino-Camelia, G., “On the fate of Lorentz symmetry in relative-locality momentum spaces”, Phys. Rev. D, 85, 084034 (2012). [DOI], [arXiv:1110.5081 [hep-th]]. |
* | 22 | Amelino-Camelia, G., Arzano, M., Ling, Y. and Mandanici, G., “Black-hole thermodynamics with modified dispersion relations and generalized uncertainty principles”, Class. Quantum Grav., 23, 2585–2606 (2006). [DOI], [arXiv:gr-qc/0506110 [gr-qc]]. |
* | 23 | Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J. and Smolin, L., “The principle of relative locality”, Phys. Rev. D, 84, 084010 (2011). [DOI], [arXiv:1101.0931 [hep-th]]. |
* | 24 | Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J. and Smolin, L., “Relative locality and the soccer ball problem”, Phys. Rev. D, 84, 087702 (2011). [DOI], [arXiv:1104.2019 [hep-th]]. |
* | 25 | Amelino-Camelia, G., Lukierski, J. and Nowicki, A., “Distance measurement and κ-deformed propagation of light and heavy probes”, Int. J. Mod. Phys. A, 14, 4575–4588 (1999). [DOI], [arXiv:gr-qc/9903066 [gr-qc]]. |
* | 26 | Amelino-Camelia, G. and Majid, S., “Waves on noncommutative space-time and gamma-ray bursts”, Int. J. Mod. Phys. A, 15, 4301–4324 (2000). [DOI], [arXiv:hep-th/9907110 [hep-th]]. |
* | 27 | Amelino-Camelia, G., Matassa, M., Mercati, F. and Rosati, G., “Taming Nonlocality in Theories with Planck-Scale Deformed Lorentz Symmetry”, Phys. Rev. Lett., 106, 071301 (2011). [DOI], [arXiv:1006.2126 [gr-qc]]. |
* | 28 | Amelino-Camelia, G., Procaccini, A. and Arzano, M., “A glimpse at the flat-spacetime limit of quantum gravity using the Bekenstein argument in reverse”, Int. J. Mod. Phys. D, 13, 2337–2343 (2004). [DOI], [arXiv:hep-th/0506182 [hep-th]]. |
* | 29 | Amelino-Camelia, G., Smolin, L. and Starodubtsev, A., “Quantum symmetry, the cosmological constant and Planck scale phenomenology”, Class. Quantum Grav., 21, 3095–3110 (2004). [DOI], [arXiv:hep-th/0306134 [hep-th]]. |
* | 30 | Anber, M.M. and Donoghue, J.F., “On the running of the gravitational constant”, Phys. Rev. D, 85, 104016 (2012). [DOI], [arXiv:1111.2875 [hep-th]]. |
* | 31 | Arzano, M., “Anatomy of a deformed symmetry: Field quantization on curved momentum space”, Phys. Rev. D, 83, 025025 (2011). [DOI], [arXiv:1009.1097 [hep-th]]. |
* | 32 | Arzano, M. and Kowalski-Glikman, J., “Kinematics of a relativistic particle with de Sitter momentum space”, Class. Quantum Grav., 28, 105009 (2011). [DOI], [arXiv:1008.2962 [hep-th]]. |
* | 33 | Arzano, M., Kowalski-Glikman, J. and Walkus, A., “Lorentz invariant field theory on κ-Minkowski space”, Class. Quantum Grav., 27, 025012 (2010). [DOI], [arXiv:0908.1974 [hep-th]]. |
* | 34 | Arzano, M. and Marciano, A., “Fock space, quantum fields and κ-Poincaré symmetries”, Phys. Rev. D, 76, 125005 (2007). [DOI], [arXiv:0707.1329 [hep-th]]. |
* | 35 | Arzano, M. and Marcianò, A., “Symplectic geometry and Noether charges for Hopf algebra space-time symmetries”, Phys. Rev. D, 75, 081701 (2007). [DOI], [arXiv:hep-th/0701268 [hep-th]]. |
* | 36 | Ashoorioon, A., Hovdebo, J.L. and Mann, R.B., “Running of the spectral index and violation of the consistency relation between tensor and scalar spectra from trans-Planckian physics”, Nucl. Phys. B, 727, 63–76 (2005). [DOI], [arXiv:gr-qc/0504135 [gr-qc]]. |
* | 37 | Ashoorioon, A., Kempf, A. and Mann, R.B., “Minimum length cutoff in inflation and uniqueness of the action”, Phys. Rev. D, 71, 023503 (2005). [DOI], [arXiv:astro-ph/0410139 [astro-ph]]. |
* | 38 | Ashoorioon, A. and Mann, R.B., “On the tensor/scalar ratio in inflation with UV cut off”, Nucl. Phys. B, 716, 261–279 (2005). [DOI], [arXiv:gr-qc/0411056 [gr-qc]]. |
* | 39 | Ashtekar, A., “New Variables for Classical and Quantum Gravity”, Phys. Rev. Lett., 57, 2244–2247 (1986). [DOI]. |
* | 40 | Ashtekar, A., Bojowald, M. and Lewandowski, J., “Mathematical structure of loop quantum cosmology”, Adv. Theor. Math. Phys., 7, 233–268 (2003). [arXiv:gr-qc/0304074]. |
* | 41 | Ashtekar, A. and Lewandowski, J., “Quantum theory of geometry. II: Volume operators”, Adv. Theor. Math. Phys., 1, 388–429 (1998). [arXiv:gr-qc/9711031]. |
* | 42 | Ashtekar, A. and Lewandowski, J., “Background independent quantum gravity: a status report”, Class. Quantum Grav., 21, R53–R152 (2004). [DOI], [arXiv:gr-qc/0404018]. |
* | 43 | Ashtekar, A., Pawlowski, T., Singh, P. and Vandersloot, K., “Loop quantum cosmology of k = 1 FRW models”, Phys. Rev. D, 75, 024035 (2007). [DOI], [arXiv:gr-qc/0612104]. |
* | 44 | Ashtekar, A. and Singh, P., “Loop Quantum Cosmology: A Status Report”, Class. Quantum Grav., 28, 213001 (2011). [DOI], [arXiv:1108.0893 [gr-qc]]. |
* | 45 | Bachas, C.P., “Lectures on D-branes”, arXiv, e-print, (1998). [arXiv:hep-th/9806199]. |
* | 46 | Bachmann, S. and Kempf, A., “The Transplanckian Question and the Casimir Effect”, arXiv, e-print, (2005). [arXiv:gr-qc/0504076 [gr-qc]]. |
* | 47 | Banks, T., “A critique of pure string theory: Heterodox opinions of diverse dimensions”, arXiv, e-print, (2003). [arXiv:hep-th/0306074]. |
* | 48 | Banks, T. and Fischler, W., “A Model for High Energy Scattering in Quantum Gravity”, arXiv, e-print, (1999). [arXiv:hep-th/9906038]. |
* | 49 | Barceló, C., Liberati, S. and Visser, M., “Analogue Gravity”, Living Rev. Relativity, 14,
lrr-2011-03 (2011). [arXiv:gr-qc/0505065 [gr-qc]]. URL (accessed 20 January 2012): http://www.livingreviews.org/lrr-2011-3. |
* | 50 | Barrau, A., Cailleteau, T., Cao, X., Diaz-Polo, J. and Grain, J., “Probing Loop Quantum Gravity with Evaporating Black Holes”, Phys. Rev. Lett., 107, 251301 (2011). [DOI], [arXiv:1109.4239 [gr-qc]]. |
* | 51 | Basu, S. and Mattingly, D., “Asymptotic Safety, Asymptotic Darkness, and the hoop conjecture in the extreme UV”, Phys. Rev. D, 82, 124017 (2010). [DOI], [arXiv:1006.0718 [hep-th]]. |
* | 52 | Battisti, M.V. and Montani, G., “The Big-Bang singularity in the framework of a Generalized Uncertainty Principle”, Phys. Lett. B, 656, 96–101 (2007). [DOI], [arXiv:gr-qc/0703025 [gr-qc]]. |
* | 53 | Battisti, M.V. and Montani, G., “Quantum dynamics of the Taub universe in a generalized uncertainty principle framework”, Phys. Rev. D, 77, 023518 (2008). [DOI], [arXiv:0707.2726 [gr-qc]]. |
* | 54 | Bina, A., Jalalzadeh, S. and Moslehi, A., “Quantum Black Hole in the Generalized Uncertainty Principle Framework”, Phys. Rev. D, 81, 023528 (2010). [DOI], [arXiv:1001.0861 [gr-qc]]. |
* | 55 | Blaut, A., Daszkiewicz, M., Kowalski-Glikman, J. and Nowak, S., “Phase spaces of doubly special relativity”, Phys. Lett. B, 582, 82–85 (2004). [DOI], [arXiv:hep-th/0312045 [hep-th]]. |
* | 56 | Bojowald, M., “Absence of singularity in loop quantum cosmology”, Phys. Rev. Lett., 86, 5227–5230 (2001). [DOI], [arXiv:gr-qc/0102069]. |
* | 57 | Bojowald, M., “Dynamical coherent states and physical solutions of quantum cosmological bounces”, Phys. Rev. D, 75, 123512 (2007). [DOI], [arXiv:gr-qc/0703144]. |
* | 58 | Bojowald, M., “Loop Quantum Cosmology”, Living Rev. Relativity, 11, lrr-2008-4 (2008). URL
(accessed 20 January 2012): http://www.livingreviews.org/lrr-2008-4. |
* | 59 | Bojowald, M., “Quantum Geometry and Quantum Dynamics at the Planck Scale”, in Kowalski-Glikman, J., Durka, R. and Szczachor, M., eds., The Planck Scale, Proceedings of the XXV Max Born Symposium, Wroclaw, Poland, 29 June – 03 July 2009, AIP Conference Proceedings, 1196, pp. 62–71, (American Institute of Physics, Melville, NY, 2009). [DOI], [arXiv:0910.2936 [gr-qc]]. |
* | 60 | Bojowald, M. and Kempf, A., “Generalized uncertainty principles and localization of a particle in discrete space”, Phys. Rev. D, 86, 085017 (2012). [DOI], [arXiv:1112.0994 [hep-th]]. |
* | 61 | Bolen, B. and Cavaglia, M., “(Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle”, Gen. Relativ. Gravit., 37, 1255–1262 (2005). [DOI], [arXiv:gr-qc/0411086 [gr-qc]]. |
* | 62 | Bombelli, L., Henson, J. and Sorkin, R.D., “Discreteness without symmetry breaking: A Theorem”, Mod. Phys. Lett. A, 24, 2579–2587 (2009). [DOI], [arXiv:gr-qc/0605006 [gr-qc]]. |
* | 63 | Bombelli, L. and Meyer, D.A., “The origin of Lorentzian geometry”, Phys. Lett. A, 141, 226–228 (1989). [DOI]. |
* | 64 | Born, M., “A suggestion for unifying quantum theory and relativity”, Proc. R. Soc. London, Ser. A, 165, 291–303 (1938). [DOI]. |
* | 65 | Bouaziz, D. and Bawin, M., “Regularization of the Singular Inverse Square Potential in Quantum Mechanics with a Minimal length”, Phys. Rev. A, 76, 032112 (2007). [DOI], [arXiv:0711.0599 [quant-ph]]. |
* | 66 | Bouaziz, D. and Bawin, M., “Singular inverse square potential in arbitrary dimensions with a minimal length: Application to the motion of a dipole in a cosmic string background”, Phys. Rev. A, 78, 032110 (2008). [DOI], [arXiv:1009.0930 [quant-ph]]. |
* | 67 | Bouaziz, D. and Ferkous, N., “Hydrogen atom in momentum space with a minimal length”, Phys. Rev. A, 82, 022105 (2010). [DOI], [arXiv:1009.0935 [quant-ph]]. |
* | 68 | Brandenberger, R.H. and Ho, P.-M., “Noncommutative space-time, stringy space-time uncertainty principle, and density fluctuations”, Phys. Rev. D, 66, 023517 (2002). [DOI], [arXiv:hep-th/0203119 [hep-th]]. |
* | 69 | Brau, F., “Minimal length uncertainty relation and hydrogen atom”, J. Phys. A: Math. Gen., 32, 7691–7696 (1999). [DOI], [arXiv:quant-ph/9905033 [quant-ph]]. |
* | 70 | Bronstein, M., “Quantentheorie schwacher Gravitationsfelder”, Phys. Z. Sowjetunion, 9, 140–157 (1936). |
* | 71 | Bruno, N.R., Amelino-Camelia, G. and Kowalski-Glikman, J., “Deformed boost transformations that saturate at the Planck scale”, Phys. Lett. B, 522, 133–138 (2001). [DOI], [arXiv:hep-th/0107039 [hep-th]]. |
* | 72 | Calmet, X., Graesser, M. and Hsu, S.D.H., “Minimum length from quantum mechanics and general relativity”, Phys. Rev. Lett., 93, 211101 (2004). [DOI], [arXiv:hep-th/0405033]. |
* | 73 | Calmet, X., Graesser, M.L. and Hsu, S.D.H., “Minimum length from first principles”, Int. J. Mod. Phys. D, 14, 2195–2200 (2005). [DOI], [arXiv:hep-th/0505144]. |
* | 74 | Calmet, X., Hossenfelder, S. and Percacci, R., “Deformed Special Relativity from Asymptotically Safe Gravity”, Phys. Rev. D, 82, 124024 (2010). [DOI], [arXiv:1008.3345 [gr-qc]]. |
* | 75 | Camacho, A., “Generalized uncertainty principle and quantum electrodynamics”, Gen. Relativ. Gravit., 35, 1153–1160 (2003). [DOI], [arXiv:gr-qc/0303061 [gr-qc]]. |
* | 76 | Campo, D., “Problems with models of a fundamental length”, arXiv, e-print, (2010). [arXiv:1004.5324 [gr-qc]]. |
* | 77 | Carmona, J.M., Cortes, J.L., Indurain, J. and Mazon, D., “Quantum Noncanonical Field Theory: Symmetries and Interaction”, Phys. Rev. D, 80, 105014 (2009). [DOI], [arXiv:0905.1901 [hep-th]]. |
* | 78 | Carmona, J.M., Cortes, J.L. and Mazon, D., “Asymptotic approach to Special Relativity compatible with a relativistic principle”, Phys. Rev. D, 82, 085012 (2010). [DOI], [arXiv:1007.3190 [gr-qc]]. |
* | 79 | Carmona, J.M., Cortes, J.L., Mazon, D. and Mercati, F., “About Locality and the Relativity Principle Beyond Special Relativity”, Phys. Rev. D, 84, 085010 (2011). [DOI], [arXiv:1107.0939 [hep-th]]. |
* | 80 | Carr, B., Modesto, L. and Prémont-Schwarz, I., “Generalized Uncertainty Principle and Self-dual Black Holes”, arXiv, e-print, (2011). [arXiv:1107.0708 [gr-qc]]. |
* | 81 | Cavaglia, M. and Das, S., “How classical are TeV scale black holes?”, Class. Quantum Grav., 21, 4511–4522 (2004). [DOI], [arXiv:hep-th/0404050 [hep-th]]. |
* | 82 | Chandra, N. and Chatterjee, S., “Thermodynamics of Ideal Gas in Doubly Special Relativity”, Phys. Rev. D, 85, 045012 (2012). [DOI], [arXiv:1108.0896 [gr-qc]]. |
* | 83 | Chang, L.N., Lewis, Z., Minic, D. and Takeuchi, T., “On the Minimal Length Uncertainty Relation and the Foundations of String Theory”, Adv. High Energy Phys., 2011, 493514 (2011). [DOI], [arXiv:1106.0068 [hep-th]]. |
* | 84 | Chang, L.N., Minic, D., Okamura, N. and Takeuchi, T., “The Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem”, Phys. Rev. D, 65, 125028 (2002). [DOI], [arXiv:hep-th/0201017 [hep-th]]. |
* | 85 | Chang, L.N., Minic, D., Okamura, N. and Takeuchi, T., “Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations”, Phys. Rev. D, 65, 125027 (2002). [DOI], [arXiv:hep-th/0111181 [hep-th]]. |
* | 86 | Chang, L.N., Minic, D. and Takeuchi, T., “Quantum Gravity, Dynamical Energy–Momentum Space and Vacuum Energy”, Mod. Phys. Lett. A, 25, 2947–2954 (2010). [DOI], [arXiv:1004.4220 [hep-th]]. |
* | 87 | Chen, P. and Adler, R.J., “Black hole remnants and dark matter”, Nucl. Phys. B (Proc. Suppl.), 124, 103–106 (2003). [DOI], [arXiv:gr-qc/0205106 [gr-qc]]. |
* | 88 | Chialva, D., “Enhanced CMBR non-Gaussianities from Lorentz violation”, J. Cosmol. Astropart. Phys., 2012(01), 037 (2012). [DOI], [arXiv:1106.0040 [hep-th]]. |
* | 89 | Chialva, D., “Signatures of very high energy physics in the squeezed limit of the bispectrum”, J. Cosmol. Astropart. Phys., 2012(10), 037 (2012). [DOI], [arXiv:1108.4203 [astro-ph.CO]]. |
* | 90 | Ciafaloni, M. and Colferai, D., “Quantum Tunneling and Unitarity Features of an S-matrix for Gravitational Collapse”, J. High Energy Phys., 2009(12), 062 (2009). [DOI], [arXiv:0909.4523 [hep-th]]. |
* | 91 | Coleman, S.R., Preskill, J. and Wilczek, F., “Quantum hair on black holes”, Nucl. Phys. B, 378, 175–246 (1992). [DOI], [arXiv:hep-th/9201059]. |
* | 92 | Cunliff, C., “Conformal fluctuations do not establish a minimum length”, arXiv, e-print, (2012). [arXiv:1201.2247 [gr-qc]]. |
* | 93 | Dadic, I., Jonke, L. and Meljanac, S., “Harmonic oscillator with minimal length uncertainty relations and ladder operators”, Phys. Rev. D, 67, 087701 (2003). [DOI], [arXiv:hep-th/0210264 [hep-th]]. |
* | 94 | Das, S., Ghosh, S. and Roychowdhury, D., “Relativistic Thermodynamics with an Invariant Energy Scale”, Phys. Rev. D, 80, 125036 (2009). [DOI], [arXiv:0908.0413 [hep-th]]. |
* | 95 | Das, S. and Mann, R.B., “Planck scale effects on some low energy quantum phenomena”, Phys. Lett. B, 704, 596–599 (2011). [DOI], [arXiv:1109.3258 [hep-th]]. |
* | 96 | Das, S. and Vagenas, E.C., “Universality of Quantum Gravity Corrections”, Phys. Rev. Lett., 101, 221301 (2008). [DOI], [arXiv:0810.5333 [hep-th]]. |
* | 97 | Das, S. and Vagenas, E.C., “Phenomenological Implications of the Generalized Uncertainty Principle”, Can. J. Phys., 87, 233–240 (2009). [DOI], [arXiv:0901.1768 [hep-th]]. |
* | 98 | Das, S., Vagenas, E.C. and Ali, A.F., “Discreteness of Space from GUP II: Relativistic Wave Equations”, Phys. Lett. B, 690, 407–412 (2010). [DOI], [arXiv:1005.3368 [hep-th]]. |
* | 99 | Daszkiewicz, M., Imilkowska, K. and Kowalski-Glikman, J., “Velocity of particles in doubly special relativity”, Phys. Lett. A, 323, 345–350 (2004). [DOI], [arXiv:hep-th/0304027 [hep-th]]. |
* | 100 | Dehghani, M., “Corrected black hole’s thermodynamics and tunneling radiation with generalized uncertainty principle and modified dispersion relation”, Int. J. Theor. Phys., 50, 618–624 (2011). [DOI]. |
* | 101 | Doplicher, S., Fredenhagen, K. and Roberts, J.E., “The quantum structure of space-time at the Planck scale and quantum fields”, Commun. Math. Phys., 172, 187–220 (1995). [DOI], [arXiv:hep-th/0303037]. |
* | 102 | Dorsch, G. and Nogueira, J.A., “Maximally Localized States in Quantum Mechanics with a Modified Commutation Relation to All Orders”, Int. J. Mod. Phys. A, 27, 1250113 (2012). [DOI], [arXiv:1106.2737 [hep-th]]. |
* | 103 | Douglas, M.R., Kabat, D.N., Pouliot, P. and Shenker, S.H., “D-branes and short distances in string theory”, Nucl. Phys. B, 485, 85–127 (1997). [DOI], [arXiv:hep-th/9608024]. |
* | 104 | Douglas, M.R. and Nekrasov, N.A., “Noncommutative field theory”, Rev. Mod. Phys., 73, 977–1029 (2001). [DOI], [arXiv:hep-th/0106048 [hep-th]]. |
* | 105 | Dvali, G., Folkerts, S. and Germani, C., “Physics of Trans-Planckian Gravity”, Phys. Rev. D, 84, 024039 (2011). [DOI], [arXiv:1006.0984 [hep-th]]. |
* | 106 | Dvali, G. and Gomez, C., “Self-Completeness of Einstein Gravity”, arXiv, e-print, (2010). [arXiv:1005.3497 [hep-th]]. |
* | 107 | Eardley, D.M. and Giddings, S.B., “Classical black hole production in high-energy collisions”, Phys. Rev. D, 66, 044011 (2002). [DOI], [arXiv:gr-qc/0201034]. |
* | 108 | Falls, K., Litim, D.F. and Raghuraman, A., “Black holes and asymptotically safe gravity”, Int. J. Mod. Phys. A, 27, 1250019 (2012). [DOI], [arXiv:1002.0260 [hep-th]]. |
* | 109 | Fityo, T.V., “Statistical physics in deformed spaces with minimal length”, Phys. Lett. A, 372, 5872–5877 (2008). [DOI]. |
* | 110 | Flint, H.T., “Relativity and the quantum theory”, Proc. R. Soc. London, Ser. A, 117, 630–637 (1928). [DOI]. |
* | 111 | Fontanini, M., Spallucci, E. and Padmanabhan, T., “Zero-point length from string fluctuations”, Phys. Lett. B, 633, 627–630 (2006). [DOI], [arXiv:hep-th/0509090]. |
* | 112 | Frassino, A.M. and Panella, O., “The Casimir Effect in Minimal Length Theories Based on a Generalized Uncertainity Principle”, Phys. Rev. D, 85, 045030 (2012). [DOI], [arXiv:1112.2924 [hep-th]]. |
* | 113 | Freidel, L., Kowalski-Glikman, J. and Nowak, S., “Field theory on κ-Minkowski space revisited: Noether charges and breaking of Lorentz symmetry”, Int. J. Mod. Phys. A, 23, 2687–2718 (2008). [DOI], [arXiv:0706.3658 [hep-th]]. |
* | 114 | Freidel, L., Kowalski-Glikman, J. and Smolin, L., “2+1 gravity and doubly special relativity”, Phys. Rev. D, 69, 044001 (2004). [DOI], [arXiv:hep-th/0307085 [hep-th]]. |
* | 115 | Galán, P. and Mena Marugán, G.A., “Quantum time uncertainty in a gravity’s rainbow formalism”, Phys. Rev. D, 70, 124003 (2004). [DOI], [arXiv:gr-qc/0411089 [gr-qc]]. |
* | 116 | Galán, P. and Mena Marugán, G.A., “Length uncertainty in a gravity’s rainbow formalism”, Phys. Rev. D, 72, 044019 (2005). [DOI], [arXiv:gr-qc/0507098 [gr-qc]]. |
* | 117 | Galán, P. and Mena Marugán, G.A., “Entropy and temperature of black holes in a gravity’s rainbow”, Phys. Rev. D, 74, 044035 (2006). [DOI], [arXiv:gr-qc/0608061 [gr-qc]]. |
* | 118 | Gambini, R. and Pullin, J., A First Course in Loop Quantum Gravity, (Oxford University Press, Oxford; New York, 2011). [Google Books]. |
* | 119 | Garattini, R., “Modified Dispersion Relations: from Black-Hole Entropy to the Cosmological Constant”, Int. J. Mod. Phys.: Conf. Ser., 14, 326–336 (2012). [DOI], [arXiv:1112.1630 [gr-qc]]. |
* | 120 | Garay, L.J., “Quantum gravity and minimum length”, Int. J. Mod. Phys. A, 10, 145–166 (1995). [DOI], [arXiv:gr-qc/9403008 [gr-qc]]. |
* | 121 | Garay, L.J., “Spacetime Foam as a Quantum Thermal Bath”, Phys. Rev. Lett., 80, 2508–2511 (1998). [DOI], [arXiv:gr-qc/9801024 [gr-qc]]. |
* | 122 | Garay, L.J., “Thermal properties of spacetime foam”, Phys. Rev. D, 58, 124015 (1998). [DOI], [arXiv:gr-qc/9806047 [gr-qc]]. |
* | 123 | Ghosh, S., “A Lagrangian for DSR Particle and the Role of Noncommutativity”, Phys. Rev. D, 74, 084019 (2006). [DOI], [arXiv:hep-th/0608206 [hep-th]]. |
* | 124 | Ghosh, S., “Generalized Uncertainty Principle and Klein Paradox”, arXiv, e-print, (2012). [arXiv:1202.1962 [hep-th]]. |
* | 125 | Ghosh, S. and Roy, P., “‘Stringy’ Coherent States Inspired By Generalized Uncertainty Principle”, Phys. Lett. B, 711, 423–427 (2012). [DOI], [arXiv:1110.5136 [hep-th]]. |
* | 126 | Giddings, S.B., “Locality in quantum gravity and string theory”, Phys. Rev. D, 74, 106006 (2006). [DOI], [arXiv:hep-th/0604072]. |
* | 127 | Giddings, S.B., Gross, D.J. and Maharana, A., “Gravitational effects in ultrahigh-energy string scattering”, Phys. Rev. D, 77, 046001 (2008). [DOI], [arXiv:0705.1816 [hep-th]]. |
* | 128 | Giddings, S.B. and Lippert, M., “Precursors, black holes, and a locality bound”, Phys. Rev. D, 65, 024006 (2002). [DOI], [arXiv:hep-th/0103231]. |
* | 129 | Giddings, S.B. and Lippert, M., “The information paradox and the locality bound”, Phys. Rev. D, 69, 124019 (2004). [DOI], [arXiv:hep-th/0402073]. |
* | 130 | Giddings, S.B., Schmidt-Sommerfeld, M. and Andersen, J.R., “High energy scattering in gravity and supergravity”, Phys. Rev. D, 82, 104022 (2010). [DOI], [arXiv:1005.5408 [hep-th]]. |
* | 131 | Giddings, S.B. and Thomas, S.D., “High energy colliders as black hole factories: The end of short distance physics”, Phys. Rev. D, 65, 056010 (2002). [DOI], [arXiv:hep-ph/0106219]. |
* | 132 | Girelli, F., Konopka, T., Kowalski-Glikman, J. and Livine, E.R., “The free particle in deformed special relativity”, Phys. Rev. D, 73, 045009 (2006). [DOI], [arXiv:hep-th/0512107 [hep-th]]. |
* | 133 | Girelli, F., Liberati, S., Percacci, R. and Rahmede, C., “Modified Dispersion Relations from the Renormalization Group of Gravity”, Class. Quantum Grav., 24, 3995–4008 (2007). [DOI], [arXiv:gr-qc/0607030 [gr-qc]]. |
* | 134 | Girelli, F. and Livine, E.R., “Physics of Deformed Special Relativity: Relativity Principle revisited”, arXiv, e-print, (2004). [arXiv:gr-qc/0412004 [gr-qc]]. |
* | 135 | Girelli, F. and Livine, E.R., “Non-Commutativity of Effective Space-Time Coordinates and the Minimal Length”, arXiv, e-print, (2007). [arXiv:0708.3813 [hep-th]]. |
* | 136 | Girelli, F. and Livine, E.R., “Special relativity as a non commutative geometry: Lessons for deformed special relativity”, Phys. Rev. D, 81, 085041 (2010). [DOI], [arXiv:gr-qc/0407098 [gr-qc]]. |
* | 137 | Gopakumar, R., Minwalla, S. and Strominger, A., “Noncommutative solitons”, J. High Energy Phys., 2000(05), 020 (2000). [DOI], [arXiv:hep-th/0003160 [hep-th]]. |
* | 138 | Gorelik, G.E., “Matvei Bronstein and quantum gravity: 70th anniversary of the unsolved problem”, Phys. Usp., 48, 1039–1053 (2005). [DOI]. |
* | 139 | Greensite, J., “Is there a minimum length in D = 4 lattice quantum gravity?”, Phys. Lett. B, 255, 375–380 (1991). [DOI]. |
* | 140 | Gross, D.J. and Mende, P.F., “String theory beyond the Planck scale”, Nucl. Phys. B, 303, 407–454 (1988). [DOI]. |
* | 141 | Hagar, A., “Length Matters: The History and the Philosophy of the Notion of Fundamental
Length in Modern Physics”, in preparation, (2012). Online version (accessed 17 December
2012): http://mypage.iu.edu/~hagara/LMBOOK.pdf. |
* | 142 | Harbach, U. and Hossenfelder, S., “The Casimir effect in the presence of a minimal length”, Phys. Lett. B, 632, 379–383 (2006). [DOI], [arXiv:hep-th/0502142 [hep-th]]. |
* | 143 | Harbach, U., Hossenfelder, S., Bleicher, M. and Stoecker, H., “Probing the minimal length scale by precision tests of the muon g-2”, Phys. Lett. B, 584, 109–113 (2004). [DOI], [arXiv:hep-ph/0308138 [hep-ph]]. |
* | 144 | Hassan, S.F. and Sloth, M.S., “Trans-Planckian effects in inflationary cosmology and the modified uncertainty principle”, Nucl. Phys. B, 674, 434–458 (2003). [DOI], [arXiv:hep-th/0204110 [hep-th]]. |
* | 145 | Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220 (1975). [DOI]. |
* | 146 | Heisenberg, W., The Physical Principles of the Quantum Theory, (University of Chicago Press, Chicago, 1930). [Google Books]. |
* | 147 | Heisenberg, W., “Zur Theorie der ‘Schauer’ in der Höhenstrahlung”, Z. Phys., 101, 533–540 (1936). [DOI]. |
* | 148 | Heisenberg, W., “Über die in der Theorie der Elementarteilchen auftretende universelle Länge”, Ann. Phys. (Leipzig), 32, 20–33 (1938). [DOI]. |
* | 149 | Heisenberg, W., “Bericht über die allgemeinen Eigenschaften der Elementarteilchen / Report on the General Properties of Elementary Particles”, in Blum, W., Dürr, H.-P. and Rechenberg, H., eds., Werner Heisenberg: Gesammelte Werke. Collected Works, Series B, pp. 346–358, (Springer, Berlin; New York, 1984). |
* | 150 | Heisenberg, W., “[247] Heisenberg an Peierls, 1930”, in von Meyenn, K., ed., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Bd. II: 1930–1939, Sources in the History of Mathematics and Physical Sciences, 6, pp. 15–18, (Springer, Berlin; New York, 1985). [Google Books]. |
* | 151 | Hinchliffe, I., Kersting, N. and Ma, Y.L., “Review of the phenomenology of noncommutative geometry”, Int. J. Mod. Phys. A, 19, 179–204 (2004). [DOI], [arXiv:hep-ph/0205040 [hep-ph]]. |
* | 152 | Hossenfelder, S., “Running coupling with minimal length”, Phys. Rev. D, 70, 105003 (2004). [DOI], [arXiv:hep-ph/0405127 [hep-ph]]. |
* | 153 | Hossenfelder, S., “Suppressed black hole production from minimal length”, Phys. Lett. B, 598, 92–98 (2004). [DOI], [arXiv:hep-th/0404232 [hep-th]]. |
* | 154 | Hossenfelder, S., “Interpretation of quantum field theories with a minimal length scale”, Phys. Rev. D, 73, 105013 (2006). [DOI], [arXiv:hep-th/0603032 [hep-th]]. |
* | 155 | Hossenfelder, S., “Self-consistency in theories with a minimal length”, Class. Quantum Grav., 23, 1815–1821 (2006). [DOI], [arXiv:hep-th/0510245 [hep-th]]. |
* | 156 | Hossenfelder, S., “Deformed Special Relativity in Position Space”, Phys. Lett. B, 649, 310–316 (2007). [DOI], [arXiv:gr-qc/0612167 [gr-qc]]. |
* | 157 | Hossenfelder, S., “Multi-Particle States in Deformed Special Relativity”, Phys. Rev. D, 75, 105005 (2007). [DOI], [arXiv:hep-th/0702016 [hep-th]]. |
* | 158 | Hossenfelder, S., “A note on quantum field theories with a minimal length scale”, Class. Quantum Grav., 25, 038003 (2008). [DOI], [arXiv:0712.2811 [hep-th]]. |
* | 159 | Hossenfelder, S., “The Box-Problem in Deformed Special Relativity”, arXiv, e-print, (2009). [arXiv:0912.0090 [gr-qc]]. |
* | 160 | Hossenfelder, S., “Bounds on an energy-dependent and observer-independent speed of light from violations of locality”, Phys. Rev. Lett., 104, 140402 (2010). [DOI], [arXiv:1004.0418 [hep-ph]]. |
* | 161 | Hossenfelder, S., “Comment on arXiv:1007.0718 by Lee Smolin”, arXiv, e-print, (2010). [arXiv:1008.1312 [gr-qc]]. |
* | 162 | Hossenfelder, S., “Comments on Nonlocality in Deformed Special Relativity, in reply to arXiv:1004.0664 by Lee Smolin and arXiv:1004.0575 by Jacob et al”, arXiv, e-print, (2010). [arXiv:1005.0535 [gr-qc]]. |
* | 163 | Hossenfelder, S., “Reply to arXiv:1006.2126 by Giovanni Amelino-Camelia et al”, arXiv, e-print, (2010). [arXiv:1006.4587 [gr-qc]]. |
* | 164 | Hossenfelder, S., “Experimental Search for Quantum Gravity”, in Frignanni, V.R., ed., Classical and Quantum Gravity: Theory, Analysis and Applications, (Nova Science Publishers, Hauppauge, NY, 2011). [arXiv:1010.3420 [gr-qc]]. |
* | 165 | Hossenfelder, S., “Can we measure structures to a precision better than the Planck length?”, Class. Quantum Grav., 29, 115011 (2012). [DOI], [arXiv:1205.3636 [gr-qc]]. |
* | 166 | Hossenfelder, S., “Comment on arXiv:1104.2019, ‘Relative locality and the soccer ball problem,’ by Amelino-Camelia et al”, arXiv, e-print, (2012). [arXiv:1202.4066 [hep-th]]. |
* | 167 | Hossenfelder, S., Bleicher, M., Hofmann, S., Ruppert, J., Scherer, S. and Stöcker, H., “Signatures in the Planck regime”, Phys. Lett. B, 575, 85–99 (2003). [DOI], [arXiv:hep-th/0305262 [hep-th]]. |
* | 168 | Hsu, S.D.H., “Quantum production of black holes”, Phys. Lett. B, 555, 92–98 (2003). [DOI], [arXiv:hep-ph/0203154]. |
* | 169 | Jacob, U., Mercati, F., Amelino-Camelia, G. and Piran, T., “Modifications to Lorentz invariant dispersion in relatively boosted frames”, Phys. Rev. D, 82, 084021 (2010). [DOI], [arXiv:1004.0575 [astro-ph.HE]]. |
* | 170 | Johnson, C.V., “D-Brane Primer”, in Harvey, J., Kachru, S. and Silverstein, E., eds., Strings, Branes and Gravity (TASI 99), Boulder, Colorado, USA, 31 May – 25 June 1999, pp. 129–350, (World Scientific, Singapore; River Edge, NJ, 2000). [DOI], [arXiv:hep-th/0007170 [hep-th]], [Google Books]. |
* | 171 | Judes, S. and Visser, M., “Conservation laws in ‘Doubly special relativity”’, Phys. Rev. D, 68, 045001 (2003). [DOI], [arXiv:gr-qc/0205067 [gr-qc]]. |
* | 172 | Kalyana Rama, S., “Some consequences of the generalized uncertainty principle: Statistical mechanical, cosmological, and varying speed of light”, Phys. Lett. B, 519, 103–110 (2001). [DOI], [arXiv:hep-th/0107255 [hep-th]]. |
* | 173 | Karliner, M., Klebanov, I.R. and Susskind, L., “Size and shape of strings”, Int. J. Mod. Phys. A, 3, 1981 (1988). [DOI]. |
* | 174 | Kempf, A., “Quantum groups and quantum field theory with nonzero minimal uncertainties in positions and momenta”, Czech. J. Phys., 44, 1041–1048 (1994). [DOI], [arXiv:hep-th/9405067]. |
* | 175 | Kempf, A., “Uncertainty relation in quantum mechanics with quantum group symmetry”, J. Math. Phys., 35, 4483–4496 (1994). [DOI], [arXiv:hep-th/9311147]. |
* | 176 | Kempf, A., “On Noncommutative Geometric Regularisation”, Phys. Rev. D, 54, 5174–5178 (1996). [DOI], [arXiv:hep-th/9602119]. |
* | 177 | Kempf, A., “Non-pointlike particles in harmonic oscillators”, J. Phys. A: Math. Gen., 30, 2093–2102 (1997). [DOI], [arXiv:hep-th/9604045 [hep-th]]. |
* | 178 | Kempf, A., “On quantum field theory with nonzero minimal uncertainties in positions and momenta”, J. Math. Phys., 38, 1347–1372 (1997). [DOI], [arXiv:hep-th/9602085]. |
* | 179 | Kempf, A., “Fields over unsharp coordinates”, Phys. Rev. Lett., 85, 2873 (2000). [DOI], [arXiv:hep-th/9905114 [hep-th]]. |
* | 180 | Kempf, A., “Mode generating mechanism in inflation with cutoff”, Phys. Rev. D, 63, 083514 (2001). [DOI], [arXiv:astro-ph/0009209]. |
* | 181 | Kempf, A., “Covariant Information-Density Cutoff in Curved Space-Time”, Phys. Rev. Lett., 92, 221301 (2004). [DOI], [arXiv:gr-qc/0310035]. |
* | 182 | Kempf, A., “Spacetime could be simultaneously continuous and discrete in the same way that information can”, New J. Phys., 12, 115001 (2010). [DOI], [arXiv:1010.4354 [gr-qc]]. |
* | 183 | Kempf, A. and Mangano, G., “Minimal length uncertainty relation and ultraviolet regularization”, Phys. Rev. D, 55, 7909–7920 (1997). [DOI], [arXiv:hep-th/9612084 [hep-th]]. |
* | 184 | Kempf, A., Mangano, G. and Mann, R.B., “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52, 1108–1118 (1995). [DOI], [arXiv:hep-th/9412167]. |
* | 185 | Kim, W., Kim, Y.-W. and Park, Y.-J., “Entropy of the Randall-Sundrum brane world with the generalized uncertainty principle”, Phys. Rev. D, 74, 104001 (2006). [DOI], [arXiv:gr-qc/0605084 [gr-qc]]. |
* | 186 | Kim, W., Son, E.J. and Yoon, M., “Thermodynamics of a black hole based on a generalized uncertainty principle”, J. High Energy Phys., 2008(01), 035 (2008). [DOI], [arXiv:0711.0786 [gr-qc]]. |
* | 187 | Kiritsis, E., Introduction to Superstring Theory, Leuven Notes in Mathematical and Theoretical Physics, (Leuven University Press, Leuven, 1998). [arXiv:hep-th/9709062]. |
* | 188 | Kober, M., “Gauge Theories under Incorporation of a Generalized Uncertainty Principle”, Phys. Rev. D, 82, 085017 (2010). [DOI], [arXiv:1008.0154 [physics.gen-ph]]. |
* | 189 | Kober, M., “Electroweak Theory with a Minimal Length”, Int. J. Mod. Phys. A, 26, 4251–4285 (2011). [DOI], [arXiv:1104.2319 [hep-ph]]. |
* | 190 | Kober, M., “Generalized Quantization Principle in Canonical Quantum Gravity and Application to Quantum Cosmology”, Int. J. Mod. Phys. A, 27, 1250106 (2012). [DOI], [arXiv:1109.4629 [gr-qc]]. |
* | 191 | Kostelecky, V.Alan and Russell, N., “Data Tables for Lorentz and CPT Violation”, Rev. Mod. Phys., 83, 11 (2011). [DOI], [arXiv:0801.0287 [hep-ph]]. |
* | 192 | Kothawala, D., Sriramkumar, L., Shankaranarayanan, S. and Padmanabhan, T., “Path integral duality modified propagators in spacetimes with constant curvature”, Phys. Rev. D, 80, 044005 (2009). [DOI], [arXiv:0904.3217 [hep-th]]. |
* | 193 | Kowalski-Glikman, J., “Observer independent quantum of mass”, Phys. Lett. A, 286, 391–394 (2001). [DOI], [arXiv:hep-th/0102098 [hep-th]]. |
* | 194 | Kowalski-Glikman, J., “Doubly special quantum and statistical mechanics from quantum κ- Poincaré algebra”, Phys. Lett. A, 299, 454–460 (2002). [DOI], [arXiv:hep-th/0111110 [hep-th]]. |
* | 195 | Kowalski-Glikman, J., “Introduction to Doubly Special Relativity”, in Amelino-Camelia, G. and Kowalski-Glikman, J., eds., Planck Scale Effects in Astrophysics and Cosmology, 40th Karpacz Winter School of Theoretical Physics, Ladek Zdrój, Poland, 4 – 14 February 2004, Lecture Notes in Physics, 669, pp. 131–159, (Springer, Berlin; New York, 2005). [DOI], [arXiv:hep-th/0405273 [hep-th]]. |
* | 196 | Kowalski-Glikman, J., “An introduction to relative locality”, unpublished, (2013). |
* | 197 | Kowalski-Glikman, J. and Nowak, S., “Doubly special relativity and de Sitter space”, Class. Quantum Grav., 20, 4799–4816 (2003). [DOI], [arXiv:hep-th/0304101 [hep-th]]. |
* | 198 | Kowalski-Glikman, J. and Starodubtsev, A., “Effective particle kinematics from Quantum Gravity”, Phys. Rev. D, 78, 084039 (2008). [DOI], [arXiv:0808.2613 [gr-qc]]. |
* | 199 | Kragh, H., “Arthur March, Werner Heisenberg, and the search for a smallest length”, Rev. Hist. Sci., 48, 401–434 (1995). [DOI]. |
* | 200 | Lévi, R., “Théorie de l’action universelle et discontinue”, J. Phys. Radium, 8, 182–198 (1927). [DOI]. |
* | 201 | Li, X., “Black hole entropy without brick walls”, Phys. Lett. B, 540, 9–13 (2002). [DOI], [arXiv:gr-qc/0204029 [gr-qc]]. |
* | 202 | Litim, D.F., “Fixed Points of Quantum Gravity and the Renormalisation Group”, in From
Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy,
Proceedings of Science, PoS(QG-Ph)024, (SISSA, Trieste, 2008). [arXiv:0810.3675 [hep-th]]. URL
(accessed 15 November 2012): http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=43. |
* | 203 | Loll, R., “Discrete Approaches to Quantum Gravity in Four Dimensions”, Living Rev.
Relativity, 1, lrr-1998-13 (1998). [arXiv:gr-qc/9805049 [gr-qc]]. URL (accessed 11 October 2011):
http://www.livingreviews.org/lrr-1998-13. |
* | 204 | Lowe, D.A., Polchinski, J., Susskind, L., Thorlacius, L. and Uglum, J., “Black hole complementarity versus locality”, Phys. Rev. D, 52, 6997–7010 (1995). [DOI], [arXiv:hep-th/9506138]. |
* | 205 | Lukierski, J., Nowicki, A. and Ruegg, H., “New quantum Poincaré algebra and κ-deformed field theory”, Phys. Lett. B, 293, 344–352 (1992). [DOI]. |
* | 206 | Lukierski, J., Ruegg, H. and Zakrzewski, W.J., “Classical and Quantum Mechanics of Free κ-Relativistic Systems”, Ann. Phys. (N.Y.), 243, 90–116 (1995). [DOI], [arXiv:hep-th/9312153 [hep-th]]. |
* | 207 | Maggiore, M., “The Algebraic structure of the generalized uncertainty principle”, Phys. Lett. B, 319, 83–86 (1993). [DOI], [arXiv:hep-th/9309034 [hep-th]]. |
* | 208 | Maggiore, M., “A generalized uncertainty principle in quantum gravity”, Phys. Lett. B, 304, 65–69 (1993). [DOI], [arXiv:hep-th/9301067]. |
* | 209 | Maggiore, M., “Quantum groups, gravity and the generalized uncertainty principle”, Phys. Rev. D, 49, 5182–5187 (1994). [DOI], [arXiv:hep-th/9305163 [hep-th]]. |
* | 210 | Magueijo, J., “Could quantum gravity be tested with high intensity lasers?”, Phys. Rev. D, 73, 124020 (2006). [DOI], [arXiv:gr-qc/0603073 [gr-qc]]. |
* | 211 | Magueijo, J. and Smolin, L., “Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88, 190403 (2002). [DOI], [arXiv:hep-th/0112090 [hep-th]]. |
* | 212 | Magueijo, J. and Smolin, L., “Generalized Lorentz invariance with an invariant energy scale”, Phys. Rev. D, 67, 044017 (2003). [DOI], [arXiv:gr-qc/0207085 [gr-qc]]. |
* | 213 | Majid, S. and Ruegg, H., “Bicrossproduct structure of κ-Poincare group and non-commutative geometry”, Phys. Lett. B, 334, 348–354 (1994). [DOI], [arXiv:hep-th/9405107]. |
* | 214 | Majumder, B., “Black Hole Entropy and the Modified Uncertainty Principle: A heuristic analysis”, Phys. Lett. B, 703, 402–405 (2011). [DOI], [arXiv:1106.0715 [gr-qc]]. |
* | 215 | Majumder, B., “Effects of GUP in Quantum Cosmological Perfect Fluid Models”, Phys. Lett. B, 699, 315–319 (2011). [DOI], [arXiv:1104.3488 [gr-qc]]. |
* | 216 | Majumder, B., “The Generalized Uncertainty Principle and the Friedmann equations”, Astrophys. Space Sci., 336, 331–335 (2011). [DOI], [arXiv:1105.2425 [gr-qc]]. |
* | 217 | Majumder, B., “Quantum Black Hole and the Modified Uncertainty Principle”, Phys. Lett. B, 701, 384–387 (2011). [DOI], [arXiv:1105.5314 [gr-qc]]. |
* | 218 | Manrique, E., Rechenberger, S. and Saueressig, F., “Asymptotically Safe Lorentzian Gravity”, Phys. Rev. Lett., 106, 251302 (2011). [DOI], [arXiv:1102.5012 [hep-th]]. |
* | 219 | March, A., “Die Geometrie kleinster Räume”, Z. Phys., 104, 93 (1936). |
* | 220 | Martin, J. and Brandenberger, R.H., “Trans-Planckian problem of inflationary cosmology”, Phys. Rev. D, 63, 123501 (2001). [DOI], [arXiv:hep-th/0005209]. |
* | 221 | Maziashvili, M., “Implications of minimum-length deformed quantum mechanics for QFT/QG”, Fortschr. Phys. (2013). [DOI], [arXiv:1110.0649 [gr-qc]]. |
* | 222 | Mead, C.A., “Possible Connection Between Gravitation and Fundamental Length”, Phys. Rev., 135, B849–B862 (1964). [DOI]. |
* | 223 | Mead, C.A., “Observable Consequences of Fundamental-Length Hypotheses”, Phys. Rev., 143, 990–1005 (1966). [DOI]. |
* | 224 | Mead, C.A. and Wilczek, F., “Walking the Planck Length through History”, Phys. Today, 54, 15 (2001). [DOI]. |
* | 225 | Medved, A.J.M. and Vagenas, E.C., “When conceptual worlds collide: The GUP and the BH entropy”, Phys. Rev. D, 70, 124021 (2004). [DOI], [arXiv:hep-th/0411022 [hep-th]]. |
* | 226 | Meljanac, S. and Samsarov, A., “Scalar field theory on κ-Minkowski space-time and translation and Lorentz invariance”, Int. J. Mod. Phys. A, 26, 1439–1468 (2011). [DOI], [arXiv:1007.3943 [hep-th]]. |
* | 227 | Mena Marugán, G.A., Olmedo, J. and Pawlowski, T., “Prescriptions in Loop Quantum Cosmology: A comparative analysis”, Phys. Rev. D, 84, 064012 (2011). [DOI], [arXiv:1108.0829 [gr-qc]]. |
* | 228 | Mende, P.F. and Ooguri, H., “Borel summation of string theory for Planck scale scattering”, Nucl. Phys. B, 339, 641–662 (1990). [DOI]. |
* | 229 | Mercuri, S., “Introduction to Loop Quantum Gravity”, in Pinheiro, C., de Arruda, A.S., Blas,
H. and Pires, G.O., eds., 5th International School on Field Theory and Gravitation, April
20 – 24, 2009, Cuiabá, Brazil, Proceedings of Science, PoS(ISFTG)016, (SISSA, Trieste, 2009).
[arXiv:1001.1330 [gr-qc]]. URL (accessed 15 November 2012): http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=81. |
* | 230 | Mignemi, S., “Doubly special relativity and translation invariance”, Phys. Lett. B, 672, 186–189 (2009). [DOI], [arXiv:0808.1628 [gr-qc]]. |
* | 231 | Mimasu, K. and Moretti, S., “Top quark phenomenology of the Arkani-Hamed–Dimopoulos–Dvali model and the minimal length scenario”, Phys. Rev. D, 85, 074019 (2012). [DOI], [arXiv:1108.3280 [hep-ph]]. |
* | 232 | Moayedi, S.K., Setare, M.R. and Moayeri, H., “Quantum Gravitational Corrections to the Real Klein-Gordon Field in the Presence of a Minimal Length”, Int. J. Theor. Phys., 49, 2080–2088 (2010). [DOI], [arXiv:1004.0563 [hep-th]]. |
* | 233 | Moayedi, S.K., Setare, M.R. and Moayeri, H., “Formulation of the Spinor Field in the Presence of a Minimal Length Based on the Quesne–Tkachuk Algebra”, Int. J. Mod. Phys. A, 26, 4981–4990 (2011). [DOI], [arXiv:1105.1900 [hep-th]]. |
* | 234 | Möglich, F., “Über das Massenverhältnis Elektron-Neutron”, Die Naturwissenschaften, 26, 409–410 (1938). [DOI]. |
* | 235 | Mohaupt, T., “Introduction to string theory”, in Giulini, D., Kiefer, C. and Lämmerzahl, C., eds., Quantum Gravity: From Theory to Experimental Search, 271th WE-Heraeus Seminar ‘Aspects of Quantum Gravity’, Bad Honnef, Germany, 24 February – 1 March 2002, Lecture Notes in Physics, 631, pp. 173–251, (Springer, Berlin; New York, 2003). [DOI], [arXiv:hep-th/0207249]. |
* | 236 | Moyal, J.E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45, 99–124 (1949). [DOI]. |
* | 237 | Myung, Y.S., Kim, Y.-W. and Park, Y.-J., “Black hole thermodynamics with generalized uncertainty principle”, Phys. Lett. B, 645, 393–397 (2007). [DOI], [arXiv:gr-qc/0609031 [gr-qc]]. |
* | 238 | Ng, Y.J. and van Dam, H., “Limitation to quantum measurements of space-time distances”, Ann. N.Y. Acad. Sci., 755, 579–584 (1995). [DOI], [arXiv:hep-th/9406110]. |
* | 239 | Nicolini, P., “Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review”, Int. J. Mod. Phys. A, 24, 1229–1308 (2009). [DOI], [arXiv:0807.1939 [hep-th]]. |
* | 240 | Niedermaier, M. and Reuter, M., “The Asymptotic Safety Scenario in Quantum Gravity”,
Living Rev. Relativity, 9, lrr-2006-5 (2006). URL (accessed 20 January 2012): http://www.livingreviews.org/lrr-2006-5. |
* | 241 | Nouicer, K., “Casimir effect in the presence of minimal lengths”, J. Phys. A: Math. Gen., 38, 10027–10035 (2005). [DOI], [arXiv:hep-th/0512027 [hep-th]]. |
* | 242 | Nozari, K. and Fazlpour, B., “Generalized uncertainty principle, modified dispersion relations and early universe thermodynamics”, Gen. Relativ. Gravit., 38, 1661–1679 (2006). [DOI], [arXiv:gr-qc/0601092 [gr-qc]]. |
* | 243 | Nozari, K. and Mehdipour, S.H., “Gravitational uncertainty and black hole remnants”, Mod. Phys. Lett. A, 20, 2937–2948 (2005). [DOI], [arXiv:0809.3144 [gr-qc]]. |
* | 244 | Nozari, K. and Pedram, P., “Minimal length and bouncing-particle spectrum”, Europhys. Lett., 92, 50013 (2010). [DOI], [arXiv:1011.5673 [hep-th]]. |
* | 245 | Nozari, K., Pedram, P. and Molkara, M., “Minimal Length, Maximal Momentum and the Entropic Force Law”, Int. J. Theor. Phys., 51, 1268–1275 (2012). [DOI], [arXiv:1111.2204 [gr-qc]]. |
* | 246 | Olmo, G.J., “Palatini Actions and Quantum Gravity Phenomenology”, J. Cosmol. Astropart. Phys., 2011(10), 018 (2011). [DOI], [arXiv:1101.2841 [gr-qc]]. |
* | 247 | Padmanabhan, T., “Physical Significance of Planck Length”, Ann. Phys. (N.Y.), 165, 38–58 (1985). [DOI]. |
* | 248 | Padmanabhan, T., “Planck length as the lower bound to all physical length scales”, Gen. Relativ. Gravit., 17, 215–221 (1985). [DOI]. |
* | 249 | Padmanabhan, T., “Limitations on the operational definition of space-time events and quantum gravity”, Class. Quantum Grav., 4, L107–L113 (1987). [DOI]. |
* | 250 | Padmanabhan, T., “Duality and zero point length of space-time”, Phys. Rev. Lett., 78, 1854–1857 (1997). [DOI], [arXiv:hep-th/9608182 [hep-th]]. |
* | 251 | Padmanabhan, T., “Hypothesis of path integral duality. I. Quantum gravitational corrections to the propagator”, Phys. Rev. D, 57, 6206–6215 (1998). [DOI]. |
* | 252 | Panella, O., “Casimir-Polder intermolecular forces in minimal length theories”, Phys. Rev. D, 76, 045012 (2007). [DOI], [arXiv:0707.0405 [hep-th]]. |
* | 253 | Panes, B., “Minimum length-maximum velocity”, Eur. Phys. J. C, 72, 1930 (2012). [DOI], [arXiv:1112.3753 [hep-ph]]. |
* | 254 | Pauli, W., “[899] Pauli an Heisenberg, 11. Juli 1947”, in von Meyenn, K., ed., Wolfgang
Pauli. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a, Bd. III: 1940–1949,
Sources in the History of Mathematics and Physical Sciences, 11, pp. 461–464, (Springer, Berlin;
New York, 1993). Online version (accessed 12 January 2012): http://cdsweb.cern.ch/record/84589. |
* | 255 | Pedram, P., “A higher order GUP with minimal length uncertainty and maximal momentum”, Phys. Lett. B, 714, 317–323 (2011). [DOI], [arXiv:1110.2999 [hep-th]]. |
* | 256 | Pedram, P., “Minimal Length and the Quantum Bouncer: A Nonperturbative Study”, Int. J. Theor. Phys., 51, 1901–1910 (2012). [DOI], [arXiv:1201.2802 [hep-th]]. |
* | 257 | Pedram, P., “New Approach to Nonperturbative Quantum Mechanics with Minimal Length Uncertainty”, Phys. Rev. D, 85, 024016 (2012). [DOI], [arXiv:1112.2327 [hep-th]]. |
* | 258 | Pedram, P., “A note on the one-dimensional hydrogen atom with minimal length uncertainty”, arXiv, e-print, (2012). [arXiv:1203.5478 [quant-ph]]. |
* | 259 | Pedram, P., Nozari, K. and Taheri, S.H., “The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field”, J. High Energy Phys., 2011(03), 093 (2011). [DOI], [arXiv:1103.1015 [hep-th]]. |
* | 260 | Percacci, R., “Asymptotic Safety”, in Oriti, D., ed., Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter, pp. 111–128, (Cambridge University Press, Cambridge; New York, 2009). [arXiv:0709.3851 [hep-th]]. |
* | 261 | Percacci, R. and Vacca, G.P., “Asymptotic Safety, Emergence and Minimal Length”, Class. Quantum Grav., 27, 245026 (2010). [DOI], [arXiv:1008.3621 [hep-th]]. |
* | 262 | Peres, A. and Rosen, N., “Quantum Limitations on the Measurement of Gravitational Fields”, Phys. Rev., 118, 335–336 (1960). [DOI]. |
* | 263 | Pérez-Payán, S., Sabido, M. and Yee, C., “Effects of deformed phase space on scalar field cosmology”, arXiv, e-print, (2011). [arXiv:1111.6136 [hep-th]]. |
* | 264 | Pikovski, I., Vanner, M.R., Aspelmeyer, M., Kim, M.S. and Brukner, ÄŒ., “Probing Planck-scale physics with quantum optics”, Nature Phys., 8, 393–397 (2012). [DOI], [ADS], [arXiv:1111.1979 [quant-ph]]. |
* | 265 | Planck, M., “Über irreversible Strahlungsvorgänge”, Ann. Phys. (Berlin), 1, 69 (1900). [DOI]. |
* | 266 | Pokrowski, G.I., “Zur Frage nach der Struktur der Zeit”, Z. Phys., 51, 737–739 (1928). [DOI]. |
* | 267 | Proca, A. and Goudsmit, S., “Sur la masse des particules élémentaires”, J. Phys. Radium, 10, 209–214 (1939). [DOI]. |
* | 268 | Quesne, C. and Tkachuk, V.M., “Composite system in deformed space with minimal length”, Phys. Rev. A, 81, 012106 (2010). [DOI], [arXiv:0906.0050 [hep-th]]. |
* | 269 | Raghavan, R.S., “Time-Energy Uncertainty in Neutrino Resonance: Quest for the Limit of Validity of Quantum Mechanics”, arXiv, e-print, (2009). [arXiv:0907.0878 [hep-ph]]. |
* | 270 | Reuter, M. and Schwindt, J.-M., “A minimal length from the cutoff modes in asymptotically safe quantum gravity”, J. High Energy Phys., 2006(01), 070 (2006). [DOI], [arXiv:hep-th/0511021 [hep-th]]. |
* | 271 | Rovelli, C. and Smolin, L., “Discreteness of area and volume in quantum gravity”, Nucl. Phys. B, 442, 593–619 (1995). [DOI], [arXiv:gr-qc/9411005]. |
* | 272 | Rychkov, V.S., “Observers and measurements in noncommutative space-times”, J. Cosmol. Astropart. Phys., 2003(07), 006 (2003). [DOI], [arXiv:hep-th/0305187 [hep-th]]. |
* | 273 | Said, J.L. and Adami, K.Z., “The generalized uncertainty principle in f(R) gravity for a charged black hole”, Phys. Rev. D, 83, 043008 (2011). [DOI], [arXiv:1102.3553 [gr-qc]]. |
* | 274 | Salecker, H. and Wigner, E.P., “Quantum limitations of the measurement of space-time distances”, Phys. Rev., 109, 571–577 (1958). [DOI]. |
* | 275 | Scardigli, F., “Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment”, Phys. Lett., B452, 39–44 (1999). [DOI], [arXiv:hep-th/9904025]. |
* | 276 | Scardigli, F. and Casadio, R., “Generalized uncertainty principle, extra dimensions and holography”, Class. Quantum Grav., 20, 3915–3926 (2003). [DOI], [arXiv:hep-th/0307174 [hep-th]]. |
* | 277 | Schutzhold, R. and Unruh, W.G., “Large-scale nonlocality in ‘doubly special relativity’ with an energy-dependent speed of light”, JETP Lett., 78, 431–435 (2003). [DOI], [arXiv:gr-qc/0308049 [gr-qc]]. |
* | 278 | Schwarz, J.H., “Introduction to superstring theory”, arXiv, e-print, (2000). [arXiv:hep-ex/0008017]. |
* | 279 | Sefiedgar, A.S., Nozari, K. and Sepangi, H.R., “Modified dispersion relations in extra dimensions”, Phys. Lett. B, 696, 119–123 (2011). [DOI], [arXiv:1012.1406 [gr-qc]]. |
* | 280 | Setare, M.R., “Corrections to the Cardy-Verlinde formula from the generalized uncertainty principle”, Phys. Rev. D, 70, 087501 (2004). [DOI], [arXiv:hep-th/0410044 [hep-th]]. |
* | 281 | Setare, M.R., “The generalized uncertainty principle and corrections to the Cardy–Verlinde formula in SAdS5 black holes”, Int. J. Mod. Phys. A, 21, 1325–1332 (2006). [DOI], [arXiv:hep-th/0504179 [hep-th]]. |
* | 282 | Shankaranarayanan, S. and Padmanabhan, T., “Hypothesis of path integral duality: Applications to QED”, Int. J. Mod. Phys. D, 10, 351–366 (2001). [DOI], [arXiv:gr-qc/0003058 [gr-qc]]. |
* | 283 | Shenker, S.H., “Another Length Scale in String Theory?”, arXiv, e-print, (1995). [arXiv:hep-th/9509132]. |
* | 284 | Sindoni, L., “Emergent Models for Gravity: an Overview of Microscopic Models”, SIGMA, 8,
027 (2012). [DOI], [arXiv:1110.0686 [gr-qc]]. URL (accessed 20 November 2012): http://sigma-journal.com/2012/027/. |
* | 285 | Smailagic, A., Spallucci, E. and Padmanabhan, T., “String theory T-duality and the zero point length of spacetime”, arXiv, e-print, (2003). [arXiv:hep-th/0308122]. |
* | 286 | Smolin, L., “On limitations of the extent of inertial frames in non-commutative relativistic spacetimes”, arXiv, e-print, (2010). [arXiv:1007.0718 [gr-qc]]. |
* | 287 | Smolin, L., “Classical paradoxes of locality and their possible quantum resolutions in deformed special relativity”, Gen. Relativ. Gravit., 43, 3671–3691 (2011). [DOI], [arXiv:1004.0664 [gr-qc]]. |
* | 288 | Snyder, H.S., “Quantized Space-Time”, Phys. Rev., 71, 38–41 (1947). [DOI]. |
* | 289 | Snyder, H.S., “[817] Snyder an Pauli, 1946”, in von Meyenn, K., ed., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Bd. III: 1940–1949, Sources in the History of Mathematics and Physical Sciences, 11, pp. 358–360, (Springer, Berlin; New York, 1993). |
* | 290 | Sorkin, R.D., “Causal sets: Discrete gravity”, in Gomberoff, A. and Marolf, D., eds., Lectures on Quantum Gravity, Pan-American Advanced Studies Institute School on Quantum Gravity, held at the CECS, Valdivia, Chile, January 4 – 14, 2002, Series of the Centro de Estudios Científicos, pp. 305–327, (Springer, New York, 2005). [arXiv:gr-qc/0309009 [gr-qc]]. |
* | 291 | Spallucci, E. and Fontanini, M., “Zero-point Length, Extra-Dimensions and String T-duality”, in Grece, S.A., ed., New Developments in String Theory Research, pp. 245–270, (Nova Science Publishers, Hauppauge, NY, 2005). [arXiv:gr-qc/0508076]. |
* | 292 | Sprenger, M., Nicolini, P. and Bleicher, M., “Neutrino oscillations as a novel probe for a minimal length”, Class. Quantum Grav., 28, 235019 (2011). [DOI], [arXiv:1011.5225 [hep-ph]]. |
* | 293 | Sprenger, M., Nicolini, P. and Bleicher, M., “Physics on the smallest scales: an introduction to minimal length phenomenology”, Eur. J. Phys., 33, 853–862 (2012). [DOI], [arXiv:1202.1500 [physics.ed-ph]]. |
* | 294 | Srinivasan, K., Sriramkumar, L. and Padmanabhan, T., “Hypothesis of path integral duality. II. Corrections to quantum field theoretic results”, Phys. Rev. D, 58, 044009 (1998). [DOI], [arXiv:gr-qc/9710104 [gr-qc]]. |
* | 295 | Sriramkumar, L. and Shankaranarayanan, S., “Path integral duality and Planck scale corrections to the primordial spectrum in exponential inflation”, J. High Energy Phys., 2006(12), 050 (2006). [DOI], [arXiv:hep-th/0608224 [hep-th]]. |
* | 296 | Stetsko, M.M., “Harmonic oscillator with minimal length uncertainty relations and ladder operators”, Phys. Rev. A, 74, 062105 (2006). [DOI], [arXiv:quant-ph/0703269 [quant-ph]]. |
* | 297 | Susskind, L., “String theory and the principles of black hole complementarity”, Phys. Rev. Lett., 71, 2367–2368 (1993). [DOI], [arXiv:hep-th/9307168]. |
* | 298 | Susskind, L., “Strings, black holes and Lorentz contraction”, Phys. Rev. D, 49, 6606–6611 (1994). [DOI], [arXiv:hep-th/9308139]. |
* | 299 | Szabo, R.J., “BUSSTEPP lectures on string theory: An introduction to string theory and D-brane dynamics”, arXiv, e-print, (2002). [arXiv:hep-th/0207142]. |
* | 300 | ’t Hooft, G. and Veltman, M., “One-loop divergencies in the theory of gravitation”, Ann. Inst.
Henri Poincare A, 20, 69–94 (1974). Online version (accessed 20 November 2012): http://www.numdam.org/item?id=AIHPA_1974__20_1_69_0. |
* | 301 | Tamaki, T., Harada, T., Miyamoto, U. and Torii, T., “Have we already detected astrophysical symptoms of space-time noncommutativity?”, Phys. Rev. D, 65, 083003 (2002). [DOI], [arXiv:gr-qc/0111056 [gr-qc]]. |
* | 302 | Tezuka, K.-I., “Uncertainty of Velocity in kappa-Minkowski Spacetime”, arXiv, e-print, (2003). [arXiv:hep-th/0302126 [hep-th]]. |
* | 303 | Thiemann, T., “Closed formula for the matrix elements of the volume operator in canonical quantum gravity”, J. Math. Phys., 39, 3347–3371 (1998). [DOI], [arXiv:gr-qc/9606091]. |
* | 304 | Thiemann, T., “Loop quantum gravity: An inside view”, in Stamatescu, I.-O. and Seiler, E., eds., Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, Lecture Notes in Physics, 721, pp. 185–263, (Springer, Berlin; New York, 2007). [DOI], [arXiv:hep-th/0608210]. |
* | 305 | Thiemann, T., Modern Canonical Quantum General Relativity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2007). [arXiv:gr-qc/0110034]. |
* | 306 | Thorne, K.S., “Nonspherical gravitational collapse: A short review”, in Klauder, J.R., ed., Magic Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth Birthday, pp. 231–258, (W.H. Freeman, San Francisco, 1972). [ADS]. |
* | 307 | Tomassini, L. and Viaggiu, S., “Physically motivated uncertainty relations at the Planck length for an emergent non-commutative spacetime”, Class. Quantum Grav., 28, 075001 (2011). [DOI], [arXiv:1102.0894 [gr-qc]]. |
* | 308 | Unruh, W.G., “Sonic analog of black holes and the effects of high frequencies on black hole evaporation”, Phys. Rev. D, 51, 2827–2838 (1995). [DOI], [arXiv:gr-qc/9409008]. |
* | 309 | Vakili, B., “Cosmology with minimal length uncertainty relations”, Int. J. Mod. Phys. D, 18, 1059–1071 (2009). [DOI], [arXiv:0811.3481 [gr-qc]]. |
* | 310 | Veneziano, G., “An enlarged uncertainty principle from gedanken string collisions?”, in
Arnowitt, R.L., Bryan, R. and Duff, M.J., eds., Strings ’89, 3rd International Superstring
Workshop, Texas A&M University, College Station, TX, March 13 – 8, 1989, pp. 86–103, (World
Scientific, Singapore, 1990). Online version (accessed 29 March 2012): http://cdsweb.cern.ch/record/197729/. |
* | 311 | Vilela Mendes, R., “Some consequences of a non-commutative space-time structure”, Eur. Phys. J. C, 42, 445–452 (2005). [DOI], [arXiv:hep-th/0406013 [hep-th]]. |
* | 312 | Wang, P., Yang, H. and Zhang, X., “Quantum gravity effects on compact star cores”, arXiv, e-print, (2011). [arXiv:1110.5550 [gr-qc]]. |
* | 313 | Wess, J., “Nonabelian gauge theories on noncommutative spaces”, in Nath, P., Zerwas, P.M.
and Grosche, C., eds., The 10th International Conference On Supersymmetry And Unification
Of Fundamental Interactions (SUSY02), June 17 – 23, 2002, DESY Hamburg, pp. 586–599,
(DESY, Hamburg, 2002). Online version (accessed 29 March 2012): http://www-library.desy.de/preparch/desy/proc/proc02-02.html. |
* | 314 | Wohlgenannt, M., “Non-commutative Geometry & Physics”, Ukr. J. Phys., 55, 5–14 (2010).
[arXiv:hep-th/0602105 [hep-th]]. URL (accessed 15 November 2012): http://ujp.bitp.kiev.ua/index.php?item=j&id=122. |
* | 315 | Xiang, L. and Wen, X.Q., “Black hole thermodynamics with generalized uncertainty principle”, J. High Energy Phys., 2009(10), 046 (2009). [DOI], [arXiv:0901.0603 [gr-qc]]. |
* | 316 | Yang, C.N., “On quantized space-time”, Phys. Rev., 72, 874 (1947). [DOI]. |
* | 317 | Yoneya, T., “On the interpretation of minimal length in string theories”, Mod. Phys. Lett. A, 4, 1587 (1989). [DOI]. |
* | 318 | Yoneya, T., “String theory and space-time uncertainty principle”, Prog. Theor. Phys., 103, 1081–1125 (2000). [DOI], [arXiv:hep-th/0004074]. |
* | 319 | Yoon, M., Ha, J. and Kim, W., “Entropy of Reissner-Nordstrom black holes with minimal length revisited”, Phys. Rev. D, 76, 047501 (2007). [DOI], [arXiv:0706.0364 [gr-qc]]. |
* | 320 | Zhang, X., Shao, L. and Ma, B.-Q., “Photon Gas Thermodynamics in Doubly Special Relativity”, Astropart. Phys., 34, 840–845 (2011). [DOI], [arXiv:1102.2613 [hep-th]]. |
* | 321 | Zhao, H.-X., Li, H.-F., Hu, S.-Q. and Zhao, R., “Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime”, Commun. Theor. Phys., 48, 465–468 (2007). [DOI], [arXiv:gr-qc/0608023 [gr-qc]]. |