Lyashko-Looijenga morphisms and submaximal factorizations of a Coxeter element
DOI: 10.1007/s10801-012-0354-4
Abstract
When W is a finite reflection group, the noncrossing partition lattice $\operatorname{NC}(W)$ of type W is a rich combinatorial object, extending the notion of noncrossing partitions of an n-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in $\operatorname{NC}(W)$ as a generalized Fuß-Catalan number, depending on the invariant degrees of W. We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of $\operatorname{NC}(W)$ as fibers of a Lyashko-Looijenga covering ( $\operatorname{LL}$ ), constructed from the geometry of the discriminant hypersurface of W. We study algebraically the map $\operatorname{LL}$ , describing the factorizations of its discriminant and its Jacobian. As byproducts, we generalize a formula stated by K. Saito for real reflection groups, and we deduce new enumeration formulas for certain factorizations of a Coxeter element of W.
Pages: 649–673
Keywords: finite Coxeter group; complex reflection group; noncrossing partition lattice; fuß-Catalan number; lyashko-Looijenga covering; Coxeter element
Full Text: PDF
References
5. Springer, New York (2001) Krattenthaler, C., Müller, T.W.: Decomposition numbers for finite Coxeter groups and generalised non-crossing partitions. Trans. Am. Math. Soc. 362, 2732-2787 (2010) CrossRef Kreweras, G.: Sur les partitions non croisées d'un cycle. Discrete Math. $1(4)$, 333-350 (1972) CrossRef Lehrer, G.I., Taylor, D.E.: Unitary reflection groups. In: Australian Mathematical Society Lecture Series, vol.
20. Cambridge University Press, Cambridge (2009) Looijenga, E.: The complement of the bifurcation variety of a simple singularity. Invent. Math. 23, 105-116 (1974) CrossRef Picantin, M.: Explicit presentations for the dual braid monoids. C. R. Math. Acad. Sci. Paris $334(10)$, 843-848 (2002) CrossRef Reading, N.: Chains in the noncrossing partition lattice. SIAM J. Discrete Math. $22(3)$, 875-886 (2008). doi:10.1137/07069777X CrossRef Reiner, V.: Non-crossing partitions for classical reflection groups. Discrete Math. 177(1-3), 195-222 (1997). doi:10.1016/S0012-$365X(96)00365$-2 CrossRef Ripoll, V.: Discriminants and Jacobians of virtual reflection groups (2010). http://arxiv.org/abs/1001.4470. Preprint arXiv:1001.4470 Ripoll, V.: Groupes de réflexion, géométrie du discriminant et partitions non-croisées. Ph.D. thesis, Université Paris Diderot-Paris 7 (2010). http://arxiv.org/abs/1010.4349. arXiv:1010.4349 Ripoll, V.: Orbites d'Hurwitz des factorisations primitives d'un élément de Coxeter. J. Algebra $323(5)$, 1432-1453 (2010). doi:10.1016/j.jalgebra.2009.12.010 CrossRef Saito, K.: Polyhedra dual to the Weyl chamber decomposition: a précis. Publ. Res. Inst. Math. Sci. $40(4)$, 1337-1384 (2004). http://projecteuclid.org/getRecord?id=euclid.prims/1145475449 CrossRef Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274-304 (1954) CrossRef Springer, T.A.: Regular elements of finite reflection groups. Invent. Math. 25, 159-198 (1974) CrossRef Stanley, R.P.: Enumerative Combinatorics, vol.
1. Cambridge Studies in Advanced Mathematics, vol.
49. Cambridge University Press, Cambridge (1997) CrossRef