ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Equivariant Pieri Rule for the homology of the affine Grassmannian

Thomas Lam and Mark Shimozono
Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor, MI, 48109, USA

DOI: 10.1007/s10801-012-0353-5

Abstract

An explicit rule is given for the product of the degree two class with an arbitrary Schubert class in the torus-equivariant homology of the affine Grassmannian. In addition a Pieri rule (the Schubert expansion of the product of a special Schubert class with an arbitrary one) is established for the equivariant homology of the affine Grassmannians of SL n and a similar formula is conjectured for Sp 2n and SO 2n+1. For SL n the formula is explicit and positive. By a theorem of Peterson these compute certain products of Schubert classes in the torus-equivariant quantum cohomology of flag varieties. The SL n Pieri rule is used in our recent definition of k-double Schur functions and affine double Schur functions.

Pages: 623–648

Keywords: Schubert calculus; affine Grassmannian; Pieri rule; quantum cohomology

Full Text: PDF

References

Andersen, H.H., Jantzen, J.C., Soergel, W.: Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: independence of p. Astérisque 220, 321 (1994) Billey, S.: Kostant polynomials and the cohomology ring for G/B. Duke Math. J. 96, 205-224 (1999) CrossRef Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. $131(1)$, 25-83 (1998) CrossRef Goresky, M., Kottwitz, R., MacPherson, R.: Homology of affine Springer fibers in the unramified case. Duke Math. J. 121, 509-561 (2004) CrossRef Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990) CrossRef Kostant, B., Kumar, S.: The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. Adv. Math. $62(3)$, 187-237 (1986) CrossRef Kumar, S.: Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics, vol.
204. Birkhäuser, Boston (2002), pp. xvi+606 CrossRef Lam, T., Shimozono, M.: Dual graded graphs for Kac-Moody algebras. Algebra Number Theory $1(4)$, 451-488 (2007) CrossRef Lam, T., Shimozono, M.: Quantum cohomology of G/P and homology of affine Grassmannian. Acta Math. 204, 49-90 (2010) CrossRef Lam, T., Shimozono, M.: k-Double Schur functions and equivariant (co)homology of the affine Grassmannian. preprint, arXiv:1105.2170 Lam, T., Schilling, A., Shimozono, M.: Schubert polynomials for the affine Grassmannian of the symplectic group. Math. Z. $264(4)$, 765-811 (2010) CrossRef Mihalcea, L.: Positivity in equivariant quantum Schubert calculus. Am. J. Math. $128(3)$, 787-803 (2006) CrossRef Peterson, D.: Lecture Notes at MIT (1997) Pon, S.: Affine Stanley symmetric functions for classical groups. Ph.D. thesis, University of California, Davis (2010)




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition