ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Arithmetics of 2-friezes

Sophie Morier-Genoud
Institut de Mathématiques de Jussieu, UMR 7586, Université Pierre et Marie Curie, 4 place Jussieu, case 247, 75252, Paris Cedex 05, France

DOI: 10.1007/s10801-012-0348-2

Abstract

We consider the variant of Coxeter-Conway frieze patterns called 2-frieze. We prove that there exist infinitely many closed integral 2-friezes (i.e. containing only positive integers) provided the width of the array is bigger than 4. We introduce operations on the integral 2-friezes generating bigger or smaller closed integral 2-friezes.

Pages: 515–539

Keywords: frieze; Coxeter-Conway frieze; cluster algebra; Laurent phenomenon

Full Text: PDF

References

Assem, I., Dupont, G.: Friezes and a construction of the Euclidean cluster variables. J. Pure Appl. Algebra 215, 2322-2340 (2011) CrossRef Assem, I., Dupont, G., Schiffler, R., Smith, D.: Friezes, strings and cluster variables. Glasg. Math. J. 54, 27-60 (2012) CrossRef Assem, I., Reutenauer, C., Smith, D.: Friezes. Adv. Math. $225(6)$, 3134-3165 (2010) CrossRef Baur, K., Marsh, R.J.: Frieze patterns for punctured discs. J. Algebr. Comb. $30(3)$, 34-379 (2009) CrossRef Bergeron, F., Reutenauer, C.: $SL_{ k }$-tiling of the plane. Ill. J. Math. $54(1)$, 263-300 (2010) Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81, 595-616 (2006) CrossRef Conway, J.H., Coxeter, H.S.M.: Triangulated polygons and frieze patterns. Math. Gaz. 57, 87-94 (1973). Also see pp. 175-183 CrossRef Coxeter, H.S.M.: Frieze patterns. Acta Arith. 18, 297-310 (1971) Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15, 497-529 (2002) CrossRef Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. $154(1)$, 63-121 (2003) CrossRef Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. Appl. Math. 28, 119-144 (2002) CrossRef Fomin, S., Zelevinsky, A.: Cluster algebras. IV. Coefficients. Compos. Math. 143, 112-164 (2007) CrossRef Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster Algebras and Poisson Geometry. Mathematical Surveys and Monographs, vol.
167. Am. Math. Soc., Providence (2010) Keller, B., Scherotzke, S.: Linear recurrence relations for cluster variables of affine quivers. Adv. Math. $228(3)$, 1842-1862 (2011) CrossRef Morier-Genoud, S., Ovsienko, V., Tabachnikov, S.: 2-frieze patterns and the cluster structure of the space of polygons. Ann. Inst. Fourier. arXiv:1008.3359 Nakajima, H.: Quiver varieties and cluster algebras. Kyoto J. Math. $51(1)$, 71-126 (2011) CrossRef Propp, J.: The combinatorics of frieze patterns and Markoff numbers. arXiv:math/0511633




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition