On isotopisms and strong isotopisms of commutative presemifields
G. Marino
and O. Polverino
1) Author Affiliations 1. Dipartimento di Matematica, Seconda Università degli Studi di Napoli, 81100, Caserta, Italy Continue reading... To view the rest of this content please follow the download PDF link above.
In this paper we prove that the P(q,\ell ) (q odd prime power and \ell >1 odd) commutative semifields constructed by Bierbrauer (Des. Codes Cryptogr. 61:187-196, 2011) are isotopic to some commutative presemifields constructed by Budaghyan and Helleseth (SETA, pp. 403-414, 2008). Also, we show that they are strongly isotopic if and only if q\equiv 1(mod\thinspace 4). Consequently, for each q\equiv - 1(mod\thinspace 4) there exist isotopic commutative presemifields of order q 2\ell (\ell >1 odd) defining CCZ-inequivalent planar DO polynomials.
Pages: 247–261
Keywords: commutative semifields; symplectic semifields; isotopy; strong isotopy; planar DO polynomials
Full Text: PDF
References
Bierbrauer, J.: Commutative semifields from projection mappings. Des. Codes Cryptogr. 61, 187-196 (2011). doi:10.1007/s10623-010-9447-z CrossRef Budaghyan, L., Helleseth, T.: New Perfect Nonlinear Multinomials over $\mathbb{F}_{p^{2k}}$ for any odd prime p. In: SETA. Lecture Notes in Comput. Sci., vol. 5203, pp. 403-414 (2008) Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. $15(2)$, 125-156 (1998) CrossRef Coulter, R.S., Henderson, M.: Commutative presemifields and semifields. Adv. Math. 217, 282-304 (2008) CrossRef Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz-Barlotti class II. Des. Codes Cryptogr. 10, 167-184 (1997) CrossRef De Beule, J., Storme, L. (eds.): Current Research Topics in Galois Geometry. Nova Science Publishers (2011, in press). ISBN: 978-1-61209-523-3 Johnson, N.L., Jha, V., Biliotti, M.: Handbook of Finite Translation Planes. Pure and Applied Mathematics. Taylor \& Francis, London (2007) Johnson, N.L., Marino, G., Polverino, O., Trombetti, R.: Semifields of order q $^{6}$ with left nucleus $\mathbb{F}_{q^{3}}$ and center $\mathbb{F}_{q}$ . Finite Fields Appl. $14(2)$, 456-469 (2008) CrossRef Kantor, W.M.: Commutative semifields and symplectic spreads. J. Algebra 270, 96-114 (2003) CrossRef Knuth, D.E.: Finite semifields and projective planes. J. Algebra 2, 182-217 (1965) CrossRef Lavrauw, M., Polverino, O.: Finite semifields. In: De Be Storme, J. (ed.) Current Research Topics in Galois Geometry. Nova Science Publishers, New York (2011, in press). ISBN: 978-1-61209-523-3 Lunardon, G., Marino, G., Polverino, O., Trombetti, R.: Symplectic semifield spreads of $PG(5,q)$ and the Veronese surface. Ric. Mat. $60(1)$, 125-142 (2011). doi:10.1007/s11587-010-0098-1 CrossRef Marino, G., Polverino, O.: On the nuclei of a finite semifield. Submitted Marino, G., Polverino, O., Trombetti, R.: Towards the classification of rank 2 semifields 6-dimensional over their center. Des. Codes Cryptogr. $61(1)$, 11-29 (2011). doi:10.1007/s10623-010-9436-2 CrossRef Zhou, Y.: A note on the isotopism of commutative semifields. Arxiv preprint, arXiv:1006.1529 (2010)
© 1992–2009 Journal of Algebraic Combinatorics
©
2012 FIZ Karlsruhe /
Zentralblatt MATH for the EMIS Electronic Edition