ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

A New Proof of the Mullineux Conjecture

Jonathan Brundan and Jonathan Kujawa

DOI: 10.1023/A:1025113308552

Abstract

Let S d denote the symmetric group on d letters. In 1979 Mullineux conjectured a combinatorial algorithm for calculating the effect of tensoring with an irreducible S d-module with the one dimensional sign module when the ground field has positive characteristic. Kleshchev proved the Mullineux conjecture in 1996. In the present article we provide a new proof of the Mullineux conjecture which is entirely independent of Kleshchev's approach. Applying the representation theory of the supergroup GL( m | n) and the supergroup analogue of Schur-Weyl Duality it becomes straightforward to calculate the combinatorial effect of tensoring with the sign representation and, hence, to verify Mullineux's conjecture. Similar techniques also allow us to classify the irreducible polynomial representations of GL( m | n) of degree d for arbitrary m, n, and d.

Pages: 13–39

Keywords: symmetric group; Mullineux; modular representation theory; supergroups; $GL( m | n)$

Full Text: PDF

References

1. S. Ariki, “On the decomposition numbers of the Hecke algebra of type G(m, 1, n),” J. Math. Kyoto Univ. 36 (1996), 789-808.
2. A. Berele and A. Regev, “Hook Young diagrams with applications to combinatories and to representations of Lie superalgebras,” Advances Math. 64 (1987), 118-175.
3. C. Bessenrodt and J. Olsson, “On residue symbols and the Mullineux conjecture,” J. Alg. Comb. 7 (1998), 227-251.
4. C. Bessenrodt, J. Olsson, and M. Xu, “On properties of the Mullineux map with an application to Schur modules,” Math. Proc. Camb. Phil. Soc. 126 (1999), 443-459.
5. A. Borel, “Properties and linear representations of Chevalley groups,” in Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics, vol. 131, Springer, 1970.
6. J. Brundan and A. Kleshchev, “Modular representations of the supergroup Q(n), I,” to appear in J. Algebra.
7. J. Brundan and A. Kleshchev, “Projective representations of symmetric groups via Sergeev duality,” Math. Z. 239 (2002), 27-68.
8. S. Donkin, “On Schur algebras and related algebras, I,” J. Algebra 104 (1986), 310-328.
9. S. Donkin, “Symmetric and exterior powers, linear source modules and representations of Schur superalgebras,” Proc. London Math. Soc. 83 (2001), 647-680.
10. B. Ford and A. Kleshchev, “A proof of the Mullineux conjecture,” Math Z. 226 (1997), 267-308.
11. J.A. Green, Polynomial representations of G L(n), Lecture Notes in Mathematics, vol. 830, Springer, 1980.
12. G.D. James, “The representation theory of the symmetric groups,” Lecture Notes in Mathematics, vol. 682, Springer, 1978.
13. J.C. Jantzen, Representations of Algebraic Groups, Academic Press, 1987.
14. V. Kac, “Lie superalgebras,” Advances Math. 26 (1977), 8-96.
15. V. Kac, “Representations of classical Lie superalgebras,” in Lecture Notes in Mathematics, vol. 676, pp. 597-626, Springer, 1978.
16. A. Kleshchev, “Branching rules for modular representations of symmetric groups III,” J. London Math. Soc. 54 (1996), 25-38.
17. J. Kujawa, “The representation theory of GL(m | n),” PhD thesis, University of Oregon, 2003.
18. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Hecke algebras at roots of unity and crystal bases of quantum affine algebras,” Comm. Math. Phys. 181 (1996), 205-263.
19. D.A. Leites, “Introduction to the theory of supermanifolds,” Russian Math. Surveys 35 (1980), 1-64.
20. Yu I. Manin, Gauge field theory and complex geometry, Grundlehren der mathematischen Wissenschaften 289, second edition, Springer, 1997.
21. N. Muir, “Polynomial representations of the general linear Lie superalgebras,” PhD thesis, University of London, 1991.
22. G. Mullineux, “Bijections of p-regular partitions and p-modular irreducibles of symmetric groups,” J. London Math. Soc. 20 (1979), 60-66.
23. I. Penkov and V. Serganova, “Representations of classical Lie superalgebras of type I ,” Indag. Math. (N.S.) 3 (1992), 419-466.
24. A. Regev, “Double centralizing theorems for the alternating groups,” J. Algebra 250 (2002), 335-352.
25. V. Serganova, Automorphisms of complex simple Lie superalgebras and affine Kac-Moody algebras, PhD thesis, Leningrad State University, 1988.
26. A. Sergeev, “Tensor algebra of the identity representation as a module over the Lie superalgebras GL(n, m) and Q(n),” Math. USSR Sbornik 51 (1985), 419-427.
27. R. Steinberg, Lectures on Chevalley Groups, Yale University, 1967.
28. M. Xu, “On Mullineux' conjecture in the representation theory of symmetric groups,” Comm. Algebra 25 (1997), 1797-1803.
29. M. Xu, “On p-series and the Mullineux conjecture,” Comm. Algebra 27 (1999), 5255-5265.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition