ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Hoffman-Singleton Graph and its Automorphisms

Paul R. Hafner

DOI: 10.1023/A:1025136524481

Abstract

We describe the Hoffman-Singleton graph geometrically, showing that it is closely related to the incidence graph of the affine plane over Ropf 5. This allows us to construct all automorphisms of the graph.

Pages: 7–12

Keywords: hoffman-singleton graph; automorphisms; biaffine plane

Full Text: PDF

References

1. C.T. Benson and N.E. Losey, “On a graph of Hoffman and Singleton,” J. Combin. Theory 11 (1971), 67-79.
2. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, 1989.
3. A.R. Calderbank and D.B. Wales, “A global code invariant under the Higman-Sims group,” J. Algebra 75 (1982), 233-260.
4. C. Fan and A.J. Schwenk, “Structure of the Hoffman-Singleton graph,” Congr. Numer. 94 (1993), 3-8.
5. W.H. Haemers, “A new partial geometry constructed from the Hoffman-Singleton graph,” in Finite Geometries and Designs, P.J. Cameron, J.W.P. Hirschfeld, D.R. Hughes (Eds.), Cambridge University Press, Cambridge, 1981, 119-127.
6. P.R. Hafner, “Geometric realisation of the graphs of McKay-Miller- \check Sirá\check n,” submitted.
7. D.G. Higman, “Primitive rank 3 groups with a prime subdegree,” Math. Z. 91 (1966), 70-86.
8. A.J. Hoffman and R.R. Singleton, “On Moore graphs with diameters 2 and 3,” IBM J. Res. Dev. 4 (1960), 497-504.
9. L.O. James, “A combinatorial proof that the Moore (7,2) graph is unique,” Utilitas Mathematica 5 (1974), 79-84.
10. B.D. McKay, M. Miller, and J. \check Sirá\check n, “A note on large graphs of diameter two and given maximum degree,” J. Combin. Theory Ser. B 74 (1998), 110-118.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition