The Hoffman-Singleton Graph and its Automorphisms
Paul R. Hafner
DOI: 10.1023/A:1025136524481
Abstract
We describe the Hoffman-Singleton graph geometrically, showing that it is closely related to the incidence graph of the affine plane over 5. This allows us to construct all automorphisms of the graph.
Pages: 7–12
Keywords: hoffman-singleton graph; automorphisms; biaffine plane
Full Text: PDF
References
1. C.T. Benson and N.E. Losey, “On a graph of Hoffman and Singleton,” J. Combin. Theory 11 (1971), 67-79.
2. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, 1989.
3. A.R. Calderbank and D.B. Wales, “A global code invariant under the Higman-Sims group,” J. Algebra 75 (1982), 233-260.
4. C. Fan and A.J. Schwenk, “Structure of the Hoffman-Singleton graph,” Congr. Numer. 94 (1993), 3-8.
5. W.H. Haemers, “A new partial geometry constructed from the Hoffman-Singleton graph,” in Finite Geometries and Designs, P.J. Cameron, J.W.P. Hirschfeld, D.R. Hughes (Eds.), Cambridge University Press, Cambridge, 1981, 119-127.
6. P.R. Hafner, “Geometric realisation of the graphs of McKay-Miller- \check Sirá\check n,” submitted.
7. D.G. Higman, “Primitive rank 3 groups with a prime subdegree,” Math. Z. 91 (1966), 70-86.
8. A.J. Hoffman and R.R. Singleton, “On Moore graphs with diameters 2 and 3,” IBM J. Res. Dev. 4 (1960), 497-504.
9. L.O. James, “A combinatorial proof that the Moore (7,2) graph is unique,” Utilitas Mathematica 5 (1974), 79-84.
10. B.D. McKay, M. Miller, and J. \check Sirá\check n, “A note on large graphs of diameter two and given maximum degree,” J. Combin. Theory Ser. B 74 (1998), 110-118.
2. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, 1989.
3. A.R. Calderbank and D.B. Wales, “A global code invariant under the Higman-Sims group,” J. Algebra 75 (1982), 233-260.
4. C. Fan and A.J. Schwenk, “Structure of the Hoffman-Singleton graph,” Congr. Numer. 94 (1993), 3-8.
5. W.H. Haemers, “A new partial geometry constructed from the Hoffman-Singleton graph,” in Finite Geometries and Designs, P.J. Cameron, J.W.P. Hirschfeld, D.R. Hughes (Eds.), Cambridge University Press, Cambridge, 1981, 119-127.
6. P.R. Hafner, “Geometric realisation of the graphs of McKay-Miller- \check Sirá\check n,” submitted.
7. D.G. Higman, “Primitive rank 3 groups with a prime subdegree,” Math. Z. 91 (1966), 70-86.
8. A.J. Hoffman and R.R. Singleton, “On Moore graphs with diameters 2 and 3,” IBM J. Res. Dev. 4 (1960), 497-504.
9. L.O. James, “A combinatorial proof that the Moore (7,2) graph is unique,” Utilitas Mathematica 5 (1974), 79-84.
10. B.D. McKay, M. Miller, and J. \check Sirá\check n, “A note on large graphs of diameter two and given maximum degree,” J. Combin. Theory Ser. B 74 (1998), 110-118.