Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 498690, 14 pages
http://dx.doi.org/10.1155/2012/498690
Research Article

Particle Swarm Optimization Algorithm Coupled with Finite Element Limit Equilibrium Method for Geotechnical Practices

1State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
2Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China

Received 5 October 2012; Accepted 10 November 2012

Academic Editor: Fei Kang

Copyright © 2012 Hongjun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper proposes a modified particle swarm optimization algorithm coupled with the finite element limit equilibrium method (FELEM) for the minimum factor of safety and the location of associated noncircular critical failure surfaces for various geotechnical practices. During the search process, the stress compatibility constraints coupled with the geometrical and kinematical compatibility constraints are firstly established based on the features of slope geometry and stress distribution to guarantee realistic slip surfaces from being unreasonable. Furthermore, in the FELEM, based on rigorous theoretical analyses and derivation, it is noted that the physical meaning of the factor of safety can be formulated on the basis of strength reserving theory rather than the overloading theory. Consequently, compared with the limit equilibrium method (LEM) and the shear strength reduction method (SSRM) through several numerical examples, the FELEM in conjunction with the improved search strategy is proved to be an effective and efficient approach to routine analysis and design in geotechnical practices with a high level of confidence.