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This paper proposes a modified particle swarm optimization algorithm coupled with the finite
element limit equilibrium method (FELEM) for the minimum factor of safety and the location
of associated noncircular critical failure surfaces for various geotechnical practices. During the
search process, the stress compatibility constraints coupled with the geometrical and kinematical
compatibility constraints are firstly established based on the features of slope geometry and
stress distribution to guarantee realistic slip surfaces from being unreasonable. Furthermore, in
the FELEM, based on rigorous theoretical analyses and derivation, it is noted that the physical
meaning of the factor of safety can be formulated on the basis of strength reserving theory rather
than the overloading theory. Consequently, compared with the limit equilibrium method (LEM)
and the shear strength reduction method (SSRM) through several numerical examples, the FELEM
in conjunctionwith the improved search strategy is proved to be an effective and efficient approach
to routine analysis and design in geotechnical practices with a high level of confidence.

1. Introduction

Slope stability analysis is still a hot issue and complex problem in the field of geotechnical
engineering, which has been attracting the attention of many geotechnical researchers.
Nowadays, the limit equilibrium method (LEM), the shear strength reduction method
(SSRM), and the finite element limit equilibrium method (FELEM) are generally employed
in geotechnical practices by engineers and researchers.

The LEM is a conventional and well-defined approach due to its simplicity and
applicability. It can handily evaluate the stability of soil slope via the minimum factor of
safety and associated critical failure surface. However, the major limitation of the LEM is
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that it is established based on some assumptions on the distributions of internal forces or the
normal force within the rigid slices. In addition, the LEM requires many trial failure surfaces
and great effort to locate the critical failure surface. Recently, many advanced heuristic
global optimization methods have been proposed successfully and detailed discussion on
these methods for the special N-P type global optimization problem has been provided
by Cheng et al. [1–6]. Unfortunately, for a nonhomogeneous soil slope, whose mechanical
properties change with time and stress state, the LEM built on rigid plastic theory might be
unreasonable.

Since the first application of the Shear strength reduction method (SSRM) in slope
stability analysis by Zienkiewicz et al. [7], thorough studies on the approach have been
carried out by Griffiths and Lane [8], Cheng et al. [9], and others. Assumptions on the
shape and location of the critical slip surface for this technique are unnecessary. In addition,
it can depict directly the process of progressive failure through display of strain field or
displacement field for soil slopes. However, Cheng et al. [9] have conducted an extensive
comparison between the LEM and SSRM and pointed out two major critical limitations of
the SSRM, as follows: (i) it is hard to achieve a good evaluation for a soil slope with soft
band; (ii) the results obtained from the SSRM are sensitive to the FEM mesh, the choice of
the tolerance and the solution of the nonlinear equations, convergence criterion, constitutive
model and boundary condition, and so on.

The finite element limit equilibrium method, which effectively couples the limit
equilibrium method and finite element stress analysis, can quickly obtain the factor of
safety under actual stress field. In the past decades, the FELEM for circular slip surface
has been well established and applied successfully into the stability analysis of soil slopes
due to its simplicity and practicability by Zou et al. [10], Kim and Lee [11], Pham and
Fredlund [12], Yamagami and Ueta [13], and Shao et al. [14]. In addition, the simplex
method, dynamic programming, and leap-frog method have been successfully introduced
into the search of the critical slip surfaces. However, most of the above-mentioned studies
are limited to circular slip surface. Consequently, the two issues, (i) whether the FELEM is
suitable for the stability analysis with noncircular slip surface and (ii) whether the modern
heuristic optimization techniques which have been employed successfully in the LEM are
suitable for the FELEM to search for the critical non-circular failure surface, still puzzle the
researchers and geotechnical engineers. Thus, before introducing the FELEM associated with
the non-circular slip surface into routine practice and design in geotechnical engineering, the
following three key problems must be figured out: (i) the definition and physical meaning
of factor of safety for non-circular slip surface in the FELEM; (ii) the effective and efficient
optimization algorithm to determine the global minimum factor of safety and associated
critical non-circular slip surface; (iii) the relationships of the minimum factor of safety
and location of critical non-circular slip surface in the LEM, SSRM, and FELEM in routine
geotechnical practices.

In this paper, the factor of safety for non-circular slip surface in the FELEM is derived
from the necessary and sufficient conditions making the sliding body reaches the critical limit
equilibrium state. The particle swarm optimization algorithm for searching the critical non-
circular slip surface which was adopted in the LEM by Cheng et al. [15] is modified to couple
with the FELEM. In the modified particle swarm optimization method, the requirements
of a kinematically acceptable failure mechanism and stress compatibility mechanism are
presented. Finally, the factors of safety and the locations of associated critical non-circular
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Figure 1: Equilibriums of force and moment in a segment of the slip surface.

failure surfaces obtained by the FELEM, LEM, and SSRM are compared for various soil
slopes.

2. Formulation of Necessary and Sufficient Conditions

As represented in Figure 1, given l as a continuous slip surface for arbitrary shape in soil
slope, the critical limit equilibrium state for the sliding body implies that the shear force
and moment counterpoise the resistant shear force and moment in any segment (Δli) of
the slip surface. Meanwhile, the integral of the sliding force and moment counterpoises that
of the resistant sliding force and moment along the slip surface. The relationships of force
and moment equilibrium in one segment of slip surface are depicted in Figure 1. Explicit
expressions for the above-defined critical limit equilibrium state are obtained in (2.1a)∼(2.3):

�Ti − �Tfi = 0, i = 1, n, (2.1a)

�M�Ti
− �M�Tfi

= 0, i = 1, n. (2.1b)

Summarizing both sides of (2.1a) and (2.1b) from 1 to n, the following relations are obtained:

n∑

i=1

�Ti −
n∑

i=1

�Tfi = 0, (2.2)

n∑

i=1

�M�Ti
−

n∑

i=1

�M�Tfi
= 0, (2.3)

where �Ti, �M�Ti
, �Tfi, and �M�Tfi

represent the driving force and moment, resistant sliding force,
and moment acted on segment i of the slip surface, respectively; τi and τfi are the shear stress
and resistant shear strength of the segment i; Δli is the length of segment i; n represents the
number of segments constituting the failure surface l.

It will be proved that the necessary and sufficient condition for the equilibrium
between the driving force and the resistant sliding force in any segment of the slip surface
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can be expressed by (2.4) as the sliding body reaches the steady state; namely, the integration
of shear stress equals to that of resistant shear strength along the slip surface l:

∫

l

τ dl =
∫

l

τfdl. (2.4)

Firstly, given that the driving force equals to the resistant sliding force in any segment
of failure surface, which validates (2.1a), then (2.2) can be achieved. The derivations are
presented as follows.

The force equilibrium of segment i in the tangential direction gives

τi ·Δ�li − τfi ·Δ�li = 0. (2.5)

Then (2.5) can be rewritten into the following form:

(
τi ·Δli − τfi ·Δli

)�li = 0, (2.6)

where �li is the direction vector of segment i in the tangential direction.
If (2.6) is justified, (2.7) can be achieved by transforming (2.6) into a scalar form:

τi ·Δli − τfi ·Δli = 0. (2.7)

Then by summarizing both sides of (2.7) from 1 to n, (2.4) can be formulated in another form:

n∑

i=1

τi ·Δli −
n∑

i=1

τfi ·Δli = 0. (2.8)

Secondly, if (2.4) or (2.8) is tenable, the equation can be rewritten as

n∑

i=1

(
τi − τfi

) ·Δli = 0. (2.9)

By considering the stress compatibility mechanism for all the segments of the slip surface
reaching the critical equilibrium state, the additional stress compatibility restriction of failure
surface should be guaranteed as follows:

τi ≤ τfi. (2.10)

Considering the restriction condition, if (2.9) can be satisfied, then (2.11)must be justified:

τi ·Δli − τfi ·Δli = 0. (2.11)

Then, (2.1a)∼(2.3) are resulted.
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It is noted that for the sliding body being in a critical limit equilibrium state along the
surface l, (2.1a), (2.1b) and (2.4) must be satisfied. So the necessary and sufficient conditions
for the sliding body reaching the critical limit equilibrium state along the surface l can be
expressed in

∫
l τfdl∫
l τ dl

= 1. (2.12)

3. Factor of Safety in FELEM

Apparently, the definition of factor of safety Fs which can be provided with reasonable
physical meaning is the most important issue in the slope stability analysis. So far, there are
two commonly used definitions. The first is based on the strength reserving theory, which
defines Fs as the coefficient by which the shear strength of the soil would be reduced to
drive the slope into the critical limit equilibrium state. The second definition is based on
the overloading theory, which obtains the Fs as the ratio of the ultimate limit loading that
militates the occurrence of slope failure to the insitu loading acting on the soil slope. In the
LEM, the strength reserving theory which is utilized to form the equilibrium equations of
slices is formulated to solve the statically indeterminate problem. Likewise, in the SSRM, Fs

is also derived through the strength reserving theory, which assumes that while c and ϕ are
reduced simultaneously by an efficient, the slip failure would initially trigger in soil slope.

In the FELEM, given that Fs (l) is the function of strength reduction coefficient for
segments along the surface l, that is, (2.1a) and (2.1b) can be achieved by dividing the shear
strength by the function in any segment of the sliding surface l, and then the necessary
and sufficient conditions for the sliding body along the surface l reaching the critical limit
equilibrium state (2.12) can be rewritten as

∫

l

τf

Fs(l)
dl =

∫

l

τ dl. (3.1)

Based on the mean value theorem, the left side of (3.1) can be transformed into

∫

l

τf

Fs(l)
dl =

∫
l τfdl

Fs
. (3.2)

According to (3.1) and (3.2), the factor of safety in the FELEM can be formulated as

Fs =

∫
l τfdl∫
l τdl

. (3.3)

Based on the above derivations, it is proved that the definition of factor of safety in the FELEM
is also established on the strength reserving theory as in the LEM and SSRM. Futhermore, the
physical meaning of factor of safety in the FELEM is the average strength reduction coefficient
for the whole potential sliding body reaching the critical limit equilibrium state along the slip
surface.
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Figure 2: Generation of reasonable failure surface.

4. Modified Particle Swarm Optimization Algorithm in FELEM

In this paper, a modern search procedure based on a modified particle swarm optimization
algorithm is proposed. In the modified approach, the method of generating trial failure
surfaces which are kinematically acceptable and stress compatibility is similar to that by
Cheng et al. [15], Greco [16], and Malkawi et al. [17].

Considering the trial surface with four segments and five vertices (V1,V2,V3,V4, and
V5) shown in Figure 2, it can be represented by eight control variables including x1, x5, α1,
α2, δ1, δ2, δ3, and δ4. Here x1 and x5 are the horizontal coordinates of the initial point,
and end point rerspectively; α1 and α2 are the initial angle and end angle. δ1, δ2, . . . , δ4 are
random numbers in the range (−0.5, 0.5). Implementation of the trial slip surface includes the
following steps: (i) the initial point and end point are determined based on the given lower
bound and upper bound; (ii) the α1 and α2 are achieved by the random procedure in the range
(0, π/2) until the reasonable intersection points of V ′

16 and V ′
56 (Figure 2) are obtained; (iii)

the positions of V2 and V ′
7 are loacated according to the random numbers δ1 and δ2; (iv) the

positions of V3 and V4 are achieved based on the random numbers δ3 and δ4 between the two
adjacent segments which have the largest horizontal distance. Herein, according to the above
principle, the specified number of vertices or segments can be produced. However, although
the trial slip surfaces generated by the above procedure are kinematically admissible, the
stress compatability condition for these trial failure surfaces cannot be guaranteed strictly,
which means that (2.10)may not be satisfied. Thus, the segments constituting the slip surface
should be subdivided to make sure that the stress constraint condition is met.

Based on the above descriptions, the formulations for a typical slope stability analysis
can be written as follows:

min Fs(x), (4.1)

s.t. xl ≤ x1 ≤ xu; xl ≤ xn+1 ≤ xu, (4.2)

s.t. 0 < α1 <
π

2
; 0 < α2 <

π

2
, (4.3)

s.t. 0 < δi < 0.5, i = 1, 2n − 4, (4.4)

s.t. τi ≤ τfi, i = 1, n ×m, (4.5)
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Figure 3: Mesh for a homogeneous soil slope.

where n is the number of segments constituting the slip surface; m is the number of
subdivisions of one segment. In fact, the constraint condition (4.5) has little effect on the
results, but it can guarantee the stress compatibility of slip surface and achievement of
necessary and sufficient conditions.

Recently, the particle swarm optimization (PSO) which is a modern heuristic global
optimization algorithm has been broadly used in complex continuous optimization problems
[18, 19]. However, it is noted that the accuracy and efficiency for the method cannot be
guaranteed as the number of control variables becomes more. To obtain the optimized
solution with fewer trials, a new version called Modified PSO (MPSO) was developed by
Cheng [1]. In MPSO, only several particles which have better objective function values are
allowed to fly. In the flying procedures, several flies are allowed for each particle in the
group; that is, one particle can fly more than once according to its objective function value.
The better the objective function value of one particle, the more times it is allowed to fly.
Herein, the number of speciated flies does not represent the number of speciated particles
that can fly. After the specified flies are achieved, the objective function value of these flies is
checked. Then new position and velocity are randomly chosen for the particles which have
the chance to flymore than once for the next circle and other new positions and velocities will
be assigned randomly to those nonflying particles in the current iteration. Other procedures
of the applied method not mentioned here are the same as the original particle swarm
optimization.

5. Verifications

Based on the above formulations and derivations, the authors have developed a program
FELEM-2D and five typical examples are used for the thorough study of the FELEM in
geotechnical practices. For the LEM, the Spencer method, which satisfies both moment
and force equilibrium, is adopted. The critical failure surfaces in the LEM and FELEM are
achieved by the combination of the modified Particle swarm optimization method (MPSO).
The inertial weight coefficient is 0.5. The stochastic weighting coefficients are 2.0. The number
of iterations is 200. The specified number of segments and flies in one iteration is 30 and 15,
respectively. For the SSRM, the plastic strain is used to depict the critical failure surface and
the failure to converge is adopted as the failure criterion for a soil slope. In addition, the elastic
perfectly plastic model with nonassociated flow law and Mohr-Coulomb failure principle is
incorporated into the finite element stress analysis in the FELEM and SSRM.

Example 5.1 (Homogeneous soil slope). Firstly, a homogeneous soil slope (Figure 3) [20] is
adopted. The intensity properties and unit weight of the soil are 42 kPa, 17◦, and 25 kN/m3,
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Figure 4: Comparisons of critical slip surfaces for two slope inclinations: (a) 30◦; (b) 50◦.

Table 1: Factors of safety by the LEM, SSRM and FELEM.

Methods Slope inclination
30◦ 35◦ 40◦ 45◦ 50◦

FELEM 1.408 1.287 1.178 1.075 1.007
SSRM 1.390 1.260 1.150 1.070 1.000
LEM 1.392 1.260 1.152 1.063 0.985

respectively. In the study, the slope with different slope inclinations are considered and the
LEM, SSRM, and FELEM analyses are carried out. The slope inclination of 30◦, 35◦, 40◦,
45◦, and 50◦ are studied, respectively. The elastic modulus and Poisson’s ratio of the soil
are assumed to be 10MPa and 0.3, respectively, throughout the numerical examples in this
paper unless specified. The boundary conditions are depicted in Figure 3. The stress field is
obtained by the well-known commercial geotechnical finite element programs Z-SOIL. The
results of stability analysis from the LEM and SSRM are obtained through SLIDE5.0 and Z-
SOIL, respectively.

In Figure 4, the dashed curves and the solid curves denote the critical slip surface
obtained by the LEM and the FELEM, respectively, while the shade zones (plastic strain)
denote the potential sliding surface obtained by the SSRM. From Table 1 and Figure 4, it
is found that the factor of safety and associated critical failure surface determined by the
LEM, SSRM, and FELEM are fairly consistent for different slope inclinations. Based on the
same shear strength parameters, all the factors of safety obtained by the LEM and SSRM
differ by less than 3% with respect to the FELEM with the increase of slope inclination. Since
the results obtained by the LEM, SSRM, and FELEM are in good agreement and only minor
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Figure 5: Geometry of a nonhomogeneous soil slope.

Table 2: Parameters of soil material.

Soil c/kPa φ/(◦) γ/(kN/m3) E/(kPa) μ K0

1 0 38 19.5 10000 0.25 0.65
2 5.3 23 19.5 10000 0.25 0.65
3 7.2 20 19.5 10000 0.25 0.65

differences exist, it can be concluded that the performances of the LEM, SSRM, and FELEM
are all satisfactory for the case of homogeneous soil slope.

Example 5.2 (Nonhomogeneous soil slope). In this example, the proposed method in
conjunction with the MPSO is employed for analysis of a nonhomogeneous soil slope
(Figure 5). Table 2 gives the geotechnical parameters for this example. The stress field is
obtained by the Z-SOIL. The results of stability analysis from the LEM and SSRM are obtained
through SLIDE5.0 and PLAXIS, respectively.

Figures 6 and 7 show the non-circular critical slip surfaces with 30 segments obtained
by the LEM (Spencer) the SSRM and the FELEM, respectively. The factors of safety and
associated critical failure surfaces are in good agreement with the LEM, SSRM, and FELEM
as can be seen from Table 3 and Figures 6 and 7. It is noted that the right end of slip surface
moves closer to the crest of the slope in the LEM and FELEM.

Example 5.3 (Slope with a soft band). A soil slope with a thin soft band (Figure 8) [21]which
was considered by Griffiths and Lane [8] is studied. The friction angles of both the soft band
and surrounding soil are equal to be zero. The unit weight, elastic modulus, and Poisson’s
ratio of the two soils are the same, with the value shown in Example 5.1. cu2 and cu1 are the
strengths of the soft band and the surrounding soil, respectively. cu1/γH = 0.25 holds for the
surrounding soil.

Considering the effect of the ratio cu2/cu1 in the LEM, SSRM, and FELEM, the stability
analysis is conducted with six strength ratios that range between 0.4 and 1.0. The results are
listed in Table 4 and the associated critical sliding surfaces obtained by the SSRM and FELEM
for two typical cases are depicted in Figures 9 and 10.

From Table 4 and Figures 9 and 10, it can be found that the minimum factors of safety
and associated critical failure surfaces achieved by the FELEM are in good agreement with
the SSRM. The locations of the critical failure surfaces from the SSRM and FELEM for the
strength ratios from 0.6 to 1.0 are virtually similar. However, it is noted that the critical failure
surface is obviously sensitive to the strength parameters of the soft band. The non-circular
failure surfaces, as shown in Figures 9 and 10, are almost along the soft band as the strength
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Table 3: Factors of safety by the LEM, SSRM, and FELEM.

Method Factor of safety
FELEM (Mohr-Coulomb principle) 1.382
SSRM (Mohr-Coulomb principle) 1.324
Simplified Bishop 1.394
Spencer 1.373

Table 4: Factors of safety by the SSRM and FELEM.

Methods cu2/cu1
0.4 0.5 0.6 0.7 0.8 1.0

FELEM — 1.166 1.373 1.409 1.430 1.456
SSRM 0.990 1.215 1.370 1.400 1.420 1.455

ratio is below 0.6. As the ratio of cu2 and cu1 is above 0.6, the circular failure mechanism
governs the stability of slope, and the factor of safety is essentially irrelevant of the strength
of soft band. Furthermore, it is noted that the proposed method cannot achieve the factor of
safety and the location of failure surface as the given strength ratio is below 0.5, because in
the special case the plastic finite element stress analysis cannot obtain a convergent solution,
which means that the actual stress field for the soil slope cannot be determined.

Example 5.4 (Soil slope under steady-state seepage). A homogeneous slope with free surface
shown in Figure 11 has the same geotechnical parameters and FEM mesh as in Example 5.1.

Regarding the role of the seepage, the SEEP/W is conducted to achieve the distribution
of pore pressure in soil slope. In the elastic-plastic FEM analysis, the effective stress of each
gauss point can be used in the stability analysis by subtracting the pore pressure from the
total stress. The factor of safety of the slope has been determined for several different slope
inclinations, which varies from 30◦ to 50◦. The comparisons for the minimum factor of safety
are shown in Table 5.

Excellent agreements concerning the minimum factors of safety between the three
methods are observed from the above results.

Example 5.5 (Ultimate bearing capacity for soil footing). Formerly, the ultimate bearing
capacity of soil footing, which is usually regarded as the external loading which can drive the
soil footing into onset of failure, can be obtained by the LEM, limit analysis. For the special
example (Figure 12) [21], Griffiths got limit collapse loading for soil footing by elastic-plastic
finite element method based on a single failure criterion of misconvergence. In the present
paper, the FELEM is performed to determine the ultimate bearing capacity of soil footing,
implying that an additional failure criterion that the factor of safety of critical surface should
be equal to unity is added into the process of computation of the ultimate bearing capacity.
Figure 12 shows a homogeneous soil footing without self-weight under vertical loading. The
analytical solution of limit load can be obtained by the Prandtl method as expressed in (5.1).
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Table 5: Factors of safety by the LEM, SSRM, and FELEM.

Methods Slope inclination
30◦ 35◦ 40◦ 45◦ 50◦

FELEM 1.350 1.280 1.220 1.155 1.088
SSRM 1.340 1.260 1.210 1.150 1.080
LEM 1.334 1.254 1.181 1.113 1.055

Figure 6: Comparison of critical slip surfaces between the FELEM and SSRM.

Figure 7: Comparison of critical slip surfaces between the FELEM and LEM.
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Figure 9: Slip surface comparisons with cu2/cu1 equal to 0.5.
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Figure 10: Slip surface comparisons with cu2/cu1 equal to 0.6.
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Figure 11: Homogeneous slope under steady-state seepage.
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Figure 12: Prandtl solution of homogeneous footing.

The ultimate bearing capacities and locations of critical slip surfaces for the typical
cases (φ = 25◦) achieved by the FELEM and the theoretical results determined by (5.1) with
different friction angles of the slopes are presented in Table 6 and Figure 13

Pu = c ·
(
tan2

(
π

4
+
φ

2

)
eπ tanφ − 1

)
· cotφ. (5.1)

It can be seen from Table 6 and Figure 13 that the differences concerning the ultimate bearing
capacity, the minimum factors of safety, and locations of associated failure surfaces are fairly
minor between the FELEM and the analytical method. Thus, it is proven that the FELEM can
lead to good estimation on the ultimate bearing capacity and capture the potential failure
surface for the soil footing in geotechnical practices.

6. Summary

In the present study, the finite element limit equilibrium method (FELEM) in conjunction
with a modified particle swarm optimization algorithm for slope stability evaluation is
proposed. A number of remarkable features of this approach are highlighted. It is clearly
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Table 6: The results of ultimate bearing capacity (kPa).

Methods φ/(◦)
5 10 15 20 25

FELEM Pu 66.3 85.3 111.8 149.6 204.5
Fs 1.006 1.010 1.022 1.028 1.038

LEM Pu 64.9 83.5 109.8 148.5 207.2
Fs 1.0 1.0 1.0 1.0 1.0

LEM
FELEM

Figure 13: Comparisons of failure surfaces of the FELEM and LEM for Example 5.5.

shown that (i) the definition of factor in the FELEM is suitable for noncircular slip surfaces;
(ii) concerning the physical meaning, the factor of safety in the FELEM is the average value
of the shear strength reduction coefficient along the sliding surface; (iii) it is still built on
the basis of strength reserving theory as that in the LEM and SSRM; (iv) the FELEM in
conjunction with the modified particle swarm optimization algorithm can be applied to
the determination of non-circular failure surfaces accurately and efficiently; (v) satisfactory
agreement on the minimum factors of safety and locations of associated critical surfaces
between the LEM, SSRM, and FELEM can be achieved. Consequently, it is proven that the
FELEM coupled with the modified particle swarm algorithm can be performed in general
geotechnical engineering practice as a beneficial reinforcement for the LEM and SSRM.
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