Department of Mathematics and Sciences, Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, Hebei 075000, China
Copyright © 2013 Junhong Li and Ning Cui. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The discrete-time epidemic model is investigated, which is obtained using the Euler method. It is verified that there exist some dynamical behaviors in this model, such as transcritical bifurcation, flip bifurcation, Hopf bifurcation, and chaos. The numerical simulations, including bifurcation diagrams and computation of Lyapunov exponents, not only show the consistence with the theoretical analysis but also exhibit the rich and complex dynamical behaviors.