Discrete Dynamics in Nature and Society
Volume 2012 (2012), Article ID 748279, 23 pages
http://dx.doi.org/10.1155/2012/748279
Research Article

Delay-Dependent Exponential Stability for Uncertain Neutral Stochastic Systems with Mixed Delays and Markovian Jumping Parameters

Department of Mathematics, Nanchang University, Nanchang 330031, China

Received 9 December 2011; Accepted 5 March 2012

Academic Editor: Vimal Singh

Copyright © 2012 Huabin Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper is mainly concerned with the globally exponential stability in mean square of uncertain neutral stochastic systems with mixed delays and Markovian jumping parameters. The mixed delays are comprised of the discrete interval time-varying delays and the distributed time delays. Taking the stochastic perturbation and Markovian jumping parameters into account, some delay-dependent sufficient conditions for the globally exponential stability in mean square of such systems can be obtained by constructing an appropriate Lyapunov-Krasovskii functional, which are given in the form of linear matrix inequalities (LMIs). The derived criteria are dependent on the upper bound and the lower bound of the time-varying delay and the distributed delay and are therefore less conservative. Two numerical examples are given to illustrate the effectiveness and applicability of our obtained results.