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This paper is mainly concerned with the globally exponential stability in mean square of uncertain
neutral stochastic systems with mixed delays and Markovian jumping parameters. The mixed
delays are comprised of the discrete interval time-varying delays and the distributed time delays.
Taking the stochastic perturbation and Markovian jumping parameters into account, some delay-
dependent sufficient conditions for the globally exponential stability in mean square of such
systems can be obtained by constructing an appropriate Lyapunov-Krasovskii functional, which
are given in the form of linear matrix inequalities (LMIs). The derived criteria are dependent on
the upper bound and the lower bound of the time-varying delay and the distributed delay and are
therefore less conservative. Two numerical examples are given to illustrate the effectiveness and
applicability of our obtained results.

1. Introduction

It is well known that many dynamical systems not only depend on the present and past
states but also involve the derivative with delays as well as the functional of the past history.
Neutral delay differential equations are often used to describe the following systems [1]:

d[x(t) −Dx(t − τ)]
dt

= f(t, x(t), x(t − τ)). (1.1)

Many authors have considered the dynamical analysis of the neutral delay differential
equations (see [2–7] and references therein). For example, Chen et al. in [3] and Wu et al.
in [4, 5] have given some LMI-based conditions ensuring the stability analysis and the
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stabilization of neutral delay systems. Taking the environmental disturbances into account,
the neutral stochastic delay differential equations can be given as follows:

d[x(t) −Dx(t − τ)] = f(t, x(t), x(t − τ))dt + g(t, x(t), x(t − τ))dB(t). (1.2)

Some fundamental theories of neutral stochastic delay differential equations are introduced
in [1, 8]. Since they can be extensively applied into many branches for the control field,
the problem about the exponential stability and the asymptotical stability of the neutral
stochastic delay systems has attracted many authors’ attention over the past few years,
and many less conservative results of delay-dependent conditions ensuring the stabilization
analysis and H∞ filtering design for such systems have been reported in many works, see,
for example, [9–14] and references therein. The methods used include the Razumikhin-type
theorems [10], the Lyapunov functional [13], the fixed point theorem [14], and the linear
matrix inequality [9, 11, 12]. For example, Huang and Mao in [9] and Chen et al. in [11] have
given the exponential stability criteria of neutral stochastic delay systems. Some LMI-based
sufficient conditions for the mean-square exponential stability analysis of stochastic systems
of neutral type have been obtained by introducing an auxiliary vector in [12]. In practice,
the parameter uncertainty is considered as one of the main sources leading to undesirable
behavior (e.g., instability) of dynamical systems, especially when implementing neural
networks in applications. The stability analysis of the uncertain neutral stochastic system
has received considerable research attention, see, for example, [15–18], and the problem of
the H∞ filter design of the uncertain neutral stochastic delay systems has been discussed in
[19, 20].

On the other hand, Markovian jump systems introduced by [21] are the hybrid
systems with two components in the state. The first one refers to the mode that is
described by a continuous-time finite-state Markovian process, and the second one refers
to the state that is represented by a system of differential equations. The jump systems
have the advantage of modeling the dynamic systems subject to abrupt variation in
their structures, such as component failures or repairs, sudden environmental disturbance,
changing subsystem interconnections, and operating in different points of a nonlinear plant
[22]. The stability analysis and H∞ filter design of stochastic delay systems with Markovian
jumping parameters and delay systems with Markovian jumping parameters have been
widely studied, see, for example, [23–38]. For example, in [24], Liu et al. have discussed
the exponential stability of delayed recurrent neural networks with Markovian jumping
parameters; Liu et al. in [24] and Wang et al. in [25] have considered some sufficient
conditions for the exponential stability of stochastic neural networks with mixed time delays
and Markovian switching; Mao in [13] has also given some sufficient conditions for the
exponential stability of stochastic delay interval systems with Markovian switching. More
recently, He and Liu in [39] and Balasubramaniam et al. in [40] have presented some LMI-
based sufficient conditions for the exponential stability of uncertain neutral systems with
Markovian jumping parameters. Although Kolmanovskii et al. in [17], and Mao et al. in
[18] have derived the exponential stability of the neutral stochastic delay systems with
Markovian jumping parameters, some sufficient conditions obtained by using the estimate
method are not easily checked. Thus, the problem of the stability analysis of the uncertain
neutral stochastic systems with mixed delays and Markovian jumping parameters has not
been fully investigated and there is still much room left for further consideration, which
constitutes the motivation for the present research.
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In this paper, the global exponential stability of a class of the uncertain neutral
stochastic systems with mixed delays and Markovian jumping parameters is discussed.
The delays include the discrete and distributed time delays, and the jumping parameters
are generated from a finite state Markov chain. By constructing an appropriate Lyapunov
functional, some LMIs-based sufficient conditions ensuring the exponential stability in mean
square of the uncertain neutral stochastic systemswithmixed delays andMarkovian jumping
parameters are obtained by using the stochastic analysis and some bounding technique. It is
worth pointing out that compared with the earlier works in [17, 18], the obtained results
given in the form of the linear matrix inequalities (LMIs) can be easily be solved by using
the standard software packages. Two illustrative examples are exploited to demonstrate the
effectiveness and applicability of the obtained results.

The content of the paper is arranged as follows. In Section 2, some necessary notations,
definitions, and lemmas will be introduced. In Section 3, we mainly study the exponential
stability in mean square of the uncertain neutral stochastic systems with mixed delays and
Markovian jumping parameters. Two illustrative numerical examples are given to show the
power of our obtained results in Section 4.

Notations. Unless otherwise specified, for a real square matrix A, the matrix A > 0 (A ≥ 0,
A < 0, A ≤ 0) means that A is a positive definite (positive semidefinite, negative definite,
and negative semidefinite, resp.); λmax(A) and λmin(A) denote the maximum and minimum
eigenvalues of the square matrix A, respectively. Let (Ω,�, {�t}t≥0, P) be a probability space
with a natural {�t}t≥0 and let E{·} stand for the mathematical expectation operator with
respect to this probability measure. If A is a vector or matrix, its transpose is denoted by
AT . |B| =

√
trace(BTB) denotes the Euclidean norm of a vector B and its induced norm of a

matrix B. Unless explicitly stated, matrices are assumed to have real entries and compatible
dimensions. Let τ > 0 and C([−τ, 0];Rn) be the family of all continuous Rn-valued functions
φ on the interval [−τ, 0] with the norm ‖φ‖ = sup{|φ(θ)| : −τ ≤ θ ≤ 0}. Denote by
L2
�0
([−τ, 0];Rn) the family of all �0-measurable C([−τ, 0];Rn)-valued random variables ξ =

{ξ(θ) : −τ ≤ θ ≤ 0} such that supθ∈[−τ,0]E|ξ(θ)|2 < +∞. B(t) = [B1(t), B2(t), . . . , Bn(t)]
T (t ≥ 0)

is an n-dimensional standard Brownian motion defined on the completed probability space
(Ω,�, P).

2. Problem Formulation

Let r(t) (t ≥ 0) be a right-continuous Markov chain on the probability space taking values in
a finite state space S = {1, 2, . . . ,N}with generator Γ = {γij}N×N given by

P
{
r(t + Δ) = j | r(t) = i

}
=

⎧
⎨

⎩

γijΔ + o(Δ), if i /= j,

1 + γiiΔ + o(Δ), if i = j,
(2.1)

where Δ > 0. Here, γij ≥ 0 is the transition rate from i to j if i /= j while

γii = −
∑

j /= i

γij . (2.2)
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Now, we assume that the Markov chain r(·) is independent of the Brownian motion B(·). It is
well known that almost every sample path of r(t) is a right-continuous step function with a
finite number of simple jumps in any finite subinterval of R+.

In this paper, we will consider the following uncertain neutral stochastic systems with
mixed delays and Markovian switching:

d[x(t) −D(r(t))x(t − d(t))] =

[

A1(r(t), t)x(t) +A2(r(t), t)f(x(t)) +A3(r(t), t)f(x(t − d(t)))

+ A4(r(t), t)
∫ t

t−σ(t)
f(x(s))ds

]

dt

+ σ

(

t, x(t), x(t − d(t)),
∫ t

t−σ(t)
x(s)ds, r(t)

)

dB(t), t ≥ 0,

(2.3)

with the initial value x0 = ϕ ∈ L2
�0
([−τ, 0], Rn) (τ = max{d2, σ}), where x(t) ∈ Rn is the system

state vector associated with the neurons and d(t) and σ(t) are the time-varying delays. Here,
we assume that the Markov chain r(·) is independent of the Brownian motion B(t) (t ≥ 0).
f : Rn → Rn is neuron activation function, and the noise perturbation σ : R+ ×Rn ×Rn ×Rn ×
S → Rn×n is the noise intensity matrix. When r(t) = i (i ∈ S), D(r(t)), A1(r(t), t), A2(r(t), t),
A3(r(t), t), and A4(r(t), t) are, respectively, denoted as Di, A1i(t), A2i(t), A3i(t), and A4i(t),
and Di (i ∈ S) are known matrices with |Di| < 1 (i ∈ S). A1i(t), A2i(t), A3i(t), and A4i(t) are
matrix functions with time-varying uncertainties, that is,

A1i(t) = A1i + ΔA1i(t),

A2i(t) = A2i + ΔA2i(t),

A3i(t) = A3i + ΔA3i(t),

A4i(t) = A4i + ΔA4i(t),

(2.4)

where A1i, A2i, A3i, and A4i (i ∈ S) are known real constant matrices and ΔA1i(t), ΔA2i(t),
ΔA3i(t), and ΔA4i(t) (i ∈ S) are unknown matrices representing time-varying parameter
uncertainties in system model. We assume that the uncertainties are norm-bounded and can
be described as

[
ΔA1i(t) ΔA2i(t) ΔA3i(t) ΔA4i(t)

]
= MiFi(t)[N1iN2iN3iN4i], FT

i (t)Fi(t) ≤ I, i ∈ S,

(2.5)

whereMi,N1i,N2i,N3i, and N4i (i ∈ S) are known real matrices and Fi(t) (i ∈ S) is unknown
real and possibly time-varying matrix for any given t. It is assumed that the elements of
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Fi(t) (i ∈ S) are Lebesgue measurable. When Fi(t) = 0 (i ∈ S), systems (2.3) have the fol-
lowing nominal case:

d[x(t) −Dix(t − d(t))] =

[

A1ix(t) +A2if(x(t)) +A3if(x(t − d(t))) +A4i

∫ t

t−σ(t)
f(x(s))ds

]

dt

+ σ

(

t, x(t), x(t − d(t)),
∫ t

t−σ(t)
x(s)ds, i

)

dB(t), t ≥ 0.

(2.6)

In order to obtain our results, we need some assumptions as follows.

Assumption 2.1. The neuron activation functions f(·) in (2.3) (or (2.6)) are bounded and sat-
isfy the following Lipschitz condition:

∣∣f(x) − f
(
y
)∣∣ ≤ ∣∣L(x − y

)∣∣, ∀x, y ∈ Rn, (2.7)

where L ∈ Rn×n is known constant matrix and f(0) = 0.

Assumption 2.2. The noise perturbation σ satisfies the following condition:

trace

[

σT

(

t, x(t), x(t − d(t)),
∫ t

t−σ(t)
x(s)ds, i

)

σ

(

t, x(t), x(t − d(t)),
∫ t

t−σ(t)
x(s)ds, i

)]

≤ xT (t)RT
1iR1ix(t) + xT (t − d(t))RT

2iR2ix(t − d(t)) +

[∫ t

t−σ(t)
x(s)ds

]T
RT

3iR3i

[∫ t

t−σ(t)
x(s)ds

]

,

(2.8)

where R1i, R2i, and R3i are known constant matrices with appropriate dimensions and σ(t, 0,
0, 0, i) = 0 (i ∈ S).

Remark 2.3. Under Assumptions 2.1 and 2.2, it is easily shown that the system (2.3) with
uncertainties (2.4) admits a unique trivial solution when the initial data ξ = 0. The readers
can refer to [41].

Assumption 2.4. d(t) and σ(t) are two time-varying continuous functions that satisfy

0 ≤ d1 ≤ d(t) ≤ d2, ḋ(t) ≤ μ < 1, 0 ≤ σ(t) ≤ σ, σ̇(t) ≤ ν < 1, (2.9)

where d1 and d2 are the lower and upper bounds of the time delay d(t), respectively.
We present the definitions and three useful lemmas as follows.
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Definition 2.5. The neutral stochastic systems with mixed delays and Markovian jump
parameters (2.6) is said to be exponentially stable in mean square if there exist a pair of
positive scalar α > 0 and l > 0 such that every solution x(t, ξ, i) of systems (2.6) satisfies

E|x(t, ξ, i)|2 ≤ l sup
s∈[−τ,0]

E
∣
∣ϕ(s)

∣
∣2e−αt, ∀t ≥ 0, (2.10)

for any ϕ ∈ L2
�0
([−τ, 0], Rn).

Definition 2.6. The uncertain neutral stochastic systems with mixed delays and Markovian
jump parameters (2.3) are said to be exponentially stable in mean square if (2.10) holds for
all admissible uncertainties (2.5).

Lemma 2.7 (see [8]). For any vectors a, b ∈ Rn, the inequality

±2aTb ≤ aTXa + bTX−1b (2.11)

holds, in which X is any n × n matrix with X > 0.

Lemma 2.8 (see [8]). Let X ∈ Rn×n; then

λmin(X)aTb ≤ aTXb ≤ λmax(X)aTb (2.12)

for any a ∈ Rn if X is a symmetric matrix.

Lemma 2.9 (see [42] Schur complement). For a given matrix

S =

(
S11 S12

ST
12 S22

)

(2.13)

with S11 = ST
11, S22 = ST

22, the following conditions are equivalent:

(1) S < 0,

(2) S22 < 0, S11 − S12S
−1
22S

T
12 < 0,

(3) S11 < 0, S22 − ST
12S

−1
11S12 < 0.

Lemma 2.10 (see [42]). Let U, V , W , and M be real matrices of appropriate dimensions with M
satisfyingM = MT ; then

M +UVW +WTV TUT < 0, ∀V TV ≤ I, (2.14)

if and only if there exist a scalar ε > 0 such that

M + ε−1UUT + εWTW < 0. (2.15)
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Lemma 2.11 (see [43]). For any positive symmetric constant matrix M ∈ Rn×n and a scalar γ > 0,
a vector function ω : [0, γ] → Rn such that the integrations concerned are well defined, and then the
following inequality holds:

[∫ γ

0
ω(s)ds

]T
M

[∫ γ

0
ω(s)ds

]
≤ γ

∫ γ

0
ωT (s)Mω(s)ds. (2.16)

3. Main Results

Theorem 3.1. Suppose that Assumptions 2.1–2.4 hold and for any given positive scalar κ ∈ (0, 1),
the neutral stochastic systems with mixed delays and Markovian switching (2.6) are exponentially
stable in mean square if there exist λi > 0 (i ∈ S) and some positive definite matrices Pi > 0 (i ∈ S)
andQl > 0 (l = 1, 2, . . . , 10) such that the following linear matrix inequalities (LMIs) are satisfied: for
i ∈ S,

Pi ≤ λiI, (3.1)

Ωi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ωi11 Ωi12 0 PiA2i PiA3i PiA4i 0 0 0

∗ Ωi22 0 0 0 0 Ωi27 Ωi28 Ωi29

∗ ∗ Ωi33 0 0 0 0 0 0

∗ ∗ ∗ −Q5 0 0 0 0 0

∗ ∗ ∗ ∗ −Q6 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q7 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q8 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q9 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q10

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.2)

where ∗ denotes the entries that are readily inferred by symmetry of a symmetric matrix and

Ωi11 = PiA1i +AT
1iPi +

N∑

j=1

γijPj + λiR
T
1iR1i + LT (Q5 +Q8)L +Q1 + d2Q2 +

1
2

(
d2
2 − d2

1

)
Q3 + σ2Q4,

Ωi12 = AT
1iPiDi −

N∑

j=1

γijPjDi,

Ωi22 = LT (Q6 +Q9)L +
N∑

j=1

γijD
T
i PjDi + λiR

T
2iR2i − (1 − u)Q1,

Ωi33 = LT (Q7 +Q10)L + λiR
T
3iR3i − κ(1 − v)Q5,

Ωi27 = DT
i PiA2i, Ωi28 = DT

i PiA3i, Ωi29 = DT
i PiA4i.

(3.3)
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Proof. Denote by C2,1(R+×Rn×S;Rn) the family of all nonnegative functions V (t, x, i) on R+×
Rn × S that are once differentiable with respect to the first variable t and twice differentiable
with respect to the second variable x. To obtain the stability conditions, we consider the
following Lyapunov functional:

V (t, x(t), i) = V1(t, x(t), i) + V2(t, x(t), i) + V3(t, x(t), i), (3.4)

where

V1(t, x(t), i) = [x(t) −Dix(t − d(t))]TPi[x(t) −Dix(t − d(t))],

V2(t, x(t), i) =
∫ t

t−d(t)
xT (s)Q1x(s)ds +

∫ t

t−d(t)

∫ t

s

xT (θ)Q2x(θ)dθ ds,

V3(t, x(t), i) =
∫−d1

−d2

∫ t

t+s

∫ t

θ

xT (u)Q3x(u)dudθ ds + σ

∫0

−σ(t)

∫ t

t+s
xT (θ)Q4x(θ)dθ ds.

(3.5)

The weak infinitesimal operator LV [17] along (2.6) from R+ × Rn × S to R is given by

LV (t, x(t), i) = LV1(t, x(t), i) + LV2(t, x(t), i) + LV3(t, x(t), i), (3.6)

where

LV1(t, x(t), i)

= xT (t)

⎡

⎣PiA1i +AT
1iPi +

N∑

j=1

γijPj

⎤

⎦x(t) + 2xT (t)PiA2if(x(t))

+ 2xT (t)PiA3if(x(t − d(t))) + 2xT (t)PiA4i

∫ t

t−σ(t)
f(x(s))ds

+ 2xT (t − d(t))DT
i PiA1ix(t) − 2xT (t − d(t))DT

i PiA2if(x(t))

− 2xT (t − d(t))DT
i PiA3if(x(t − d(t))) − 2xT (t − d(t))DT

i PiA4i

∫ t

t−σ(t)
f(x(s))ds

+ xT (t)

⎡

⎣−
N∑

j=1

γijPjDi

⎤

⎦x(t − d(t)) + xT (t − d(t))

⎡

⎣−
N∑

j=1

γijD
T
i Pi

⎤

⎦x(t)

+ xT (t − d(t))

⎡

⎣
N∑

j=1

DT
i PjDi

⎤

⎦x(t − d(t))

+ trace

[

σT

(

t, x(t), x(t − d(t)),
∫ t

t−σ(t)
x(s)ds

)

V1xxσ

(

t, x(t), x(t − d(t)),
∫ t

t−σ(t)
x(s)ds

)]

.

(3.7)
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By Lemma 2.7, we have

xT (t)PiA2if(x(t), i) ≤ xT (t)PiA2iQ
−1
5 AT

2iPix(t) + fT (x(t))Q5f(x(t))

≤ xT (t)PiA2iQ
−1
5 AT

2iPix(t) + xT (t)LTQ5Lx(t),
(3.8)

2xT (t)PiA3if(x(t − d(t)), i) ≤ xT (t)PiA3iQ
−1
6 AT

3iPix(t)

+ fT (x(t − d(t)), i)Q6f(x(t − d(t)), i)

≤ xT (t)PiA3iQ
−1
6 AT

3iPix(t)

+ xT (t − d(t))LTQ6Lx(t − d(t)),

(3.9)

−2xT (t − d(t))DT
i PiA2if(x(t), i) ≤ xT (t − d(t))DT

i PiA2iQ
−1
8 AT

2iPiDix(t − d(t))

+ fT (x(t))Q8f(x(t))

≤ xT (t − d(t))DT
i PiA2iQ

−1
8 AT

2iPiDix(t − d(t))

+ xT (t)LTQ8Lx(t),

(3.10)

−2xT (t − d(t))DT
i PiA3if(x(t − d(t)), i) ≤ xT (t − d(t))DT

i PiA3iQ
−1
9 AT

3iPiDix(t − d(t))

+ fT (x(t − d(t)))Q9f(x(t − d(t)))

≤ xT (t − d(t))DT
i PiA3iQ

−1
9 AT

3iPiDix(t − d(t))

+ xT (t − d(t))LTQ9Lx(t − d(t)).

(3.11)

From Lemmas 2.7 and 2.11, it implies that

2xT (t)PiA4i

∫ t

t−σ(t)
f(x(s))ds ≤ xT (t)PiA4iQ

−1
7 AT

4iPix(t)

+

[∫ t

t−σ(t)
f(x(s))ds

]T
Q7

[∫ t

t−σ(t)
f(x(s))ds

]

≤ xT (t)PiA4iQ
−1
7 AT

4iPix(t)

+

[∫ t

t−σ(t)
x(s)ds

]T
LTQ7L

[∫ t

t−σ(t)
x(s)ds

]

,

(3.12)

−2xT (t − d(t))DT
i PiA4i

∫ t

t−σ(t)
f(x(s))ds ≤ xT (t − d(t))DT

i PiA4iQ
−1
10A

T
4iPiDix(t − d(t))

+

[∫ t

t−σ(t)
f(x(s))ds

]T
Q10

[∫ t

t−σ(t)
f(x(s))ds

]

≤ xT (t − d(t))PiA4iQ
−1
10A

T
4iPix(t − d(t))

+

[∫ t

t−σ(t)
x(s)ds

]T
LTQ10L

[∫ t

t−σ(t)
x(s)ds

]

.

(3.13)
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Substituting (3.8)–(3.13) into (3.7) and from Assumption 2.2, it follows that

LV1(t, x(t), i)

≤ xT (t)

⎡

⎣PiA1i +AT
1iPi +

N∑

j=1

γijPj + λiR
T
1iR1i + LT (Q5 +Q8)L

+ PiA2iQ
−1
5 AT

2iPi + PiA3i(t)Q−1
6 A−T

3i Pi + PiA4iQ
−1
7 AT

4iPi

⎤

⎦x(t)

+ xT (t)

⎡

⎣AT
1iPiDi −

N∑

j=1

γijPjDi

⎤

⎦x(t − d(t)) + xT (t − d(t))

×
⎡

⎣DT
i PiA1i −

N∑

j=1

γijD
T
i Pj

⎤

⎦x(t) + x(t − d(t))

×
⎡

⎣DT
i PiA2iQ

−1
8 AT

2iPiDi +DT
i PiA3iQ

−1
9 AT

3iPiDi

+ DT
i PiA4iQ

−1
10A

T
4iPiDi + LT (Q6 +Q9)L +

N∑

j=1

γijD
T
i PjDi + λiR

T
2iR2i

⎤

⎦x(t − d(t))

+

[∫ t

t−σ(t)
x(s)ds

]T[
LT (Q7 +Q10)L + λiR

T
3iR3i

][∫ t

t−σ(t)
x(s)ds

]

.

(3.14)

On the other hand, we can obtain

LV2(t, x(t), i) ≤ xT [Q1 + d2Q2]x(t) −
(
1 − μ

)
xT (t − d(t))Q1x(t − d(t))

− (1 − μ
)
∫ t

t−d(t)
xT (s)Q2x(s)ds,

(3.15)

LV3(t, x(t), i) ≤ xT (t)
[
1
2

(
d2
2 − d2

1

)
Q3 + σ2Q4

]
x(t) −

∫−d1

−d2

∫ t

t+s
xT (θ)Q3x(θ)dθ ds

− σ(1 − ν)
∫ t

t−σ(t)
xT (s)Q5x(s)ds

≤ xT (t)
[
1
2

(
d2
2 − d2

1

)
Q3 + σ2Q4

]
x(t) −

∫−d1

−d2

∫ t

t+s
xT (θ)Q3x(θ)dθ ds

− σ(1 − κ)(1 − ν)
∫ t

t−σ(t)
xT (s)Q5x(s)ds

− κ(1 − ν)

[∫ t

t−σ(t)
x(s)ds

]T
Q5

[∫ t

t−σ(t)
x(s)ds

]

.

(3.16)
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Substituting (3.14)–(3.16) into (3.6), we have

LV (t, x(t), i)

≤ xT (t)

⎡

⎣PiA1i +AT
1iPi +

N∑

j=1

γijPj + λiR
T
1iR1i + LT (Q5 +Q8)L + PiA2iQ

−1
5 AT

2iPi

+ PiA3i(t)Q−1
6 AT

3iPi + PiA4iQ
−1
7 AT

4iPi +Q1 + d2Q2 +
1
2

(
d2
2 − d2

1

)
Q3 + σ2Q4

⎤

⎦x(t)

+ xT (t)

⎡

⎣AT
1iPiDi −

N∑

j=1

γijPjDi

⎤

⎦x(t − d(t)) + x(t − d(t))

⎡

⎣DT
i PiA

T
1i −

N∑

j=1

γijD
T
i Pj

⎤

⎦x(t)

+ xT (t − d(t))

⎡

⎣LT (Q6 +Q9)L +DT
i PiA2iQ

−1
8 AT

2iPiDi +DT
i PiA3iQ

−1
9 AT

3iPiDi

+ DT
i PiA4iQ

−1
10A

T
4iPiDi + λiR

T
2iR2i +

N∑

j=1

γijD
T
i PjDi −

(
1 − μ

)
Q1

⎤

⎦x(t − d(t))

+

[∫ t

t−σ(t)
x(s)ds

]T[
LT (Q7 +Q10)L + λiR

T
3iR3i − κ(1 − ν)Q4

][∫ t

t−σ(t)
x(s)ds

]

− (1 − μ
)
∫ t

t−d(t)
xT (s)Q2x(s)ds −

∫−d1

−d2

∫ t

t+s
xT (θ)Q3x(θ)dθ ds

− σ(1 − κ)(1 − ν)
∫ t

t−σ(t)
xT (s)Q5x(s)ds

≤ ξT (t)Πiξ(t) −
(
1 − μ

)
∫ t

t−d(t)
xT (s)Q2x(s)ds −

∫−d1

−d2

∫ t

t+s
xT (θ)Q3x(θ)dθ ds

− σ(1 − κ)(1 − ν)
∫ t

t−σ(t)
xT (s)Q4x(s)ds,

(3.17)

where ξ(t) = [xT (t) xT (t − d(t))
∫ t
t−σ(t) x

T (s)ds]
T
and, for i ∈ S,

Πi =

⎡

⎢⎢
⎣

Π11 Π12 0

∗ Π22 0

∗ ∗ Π33

⎤

⎥⎥
⎦,

Π11 = PiA1i +AT
1iPi +

N∑

j=1

γijPj + λiR
T
1iR1i + LT (Q5 +Q8)L + PiA2iQ

−1
5 AT

2iPi

+ PiA3i(t)Q−1
6 AT

3iPi + PiA4iQ
−1
7 AT

4iPi +Q1 + d2Q2 +
1
2

(
d2
2 − d2

1

)
Q3 + σ2Q4,
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Π12 = AT
1iPiDi −

N∑

j=1

PjDi,

Π22 = LT (Q6 +Q9)L +DT
i PiA2iQ

−1
8 AT

2iPiDi +DT
i PiA3iQ

−1
9 AT

3iPiDi

+DT
i PiA4iQ

−1
10A

T
4iPiDi + λiR

T
2iR2i +

N∑

j=1

γijD
T
i PjDi −

(
1 − μ

)
Q1,

Π33 = LT (Q7 +Q10)L + λiR
T
3iR3i − κ(1 − ν)Q4.

(3.18)

In view of (3.2), we have Πi < 0, for i ∈ S. By the Lyapunov functional V (t, x(t), i),

V (t, x(t), i) = [x(t) −Dix(t − d(t))]TPi[x(t) −Dix(t − d(t))] +
∫ t

t−d(t)
xT (s)Q1x(s)ds

+
∫ t

t−d(t)

∫ t

s

xT (θ)Q2x(θ)dθ ds +
∫−d1

−d2

∫ t

t+s

∫ t

θ

xT (u)Q3x(u)dudθ ds

+ σ

∫0

−σ(t)

∫ t

t+s
xT (θ)Q4x(θ)dθ ds

≤ ξT (t)Π′
iξ(t) +

∫ t

t−d(t)
xT (s)[Q1 + d2Q2]x(s)ds + σ2

∫ t

t−σ(t)
xT (s)Q4x(s)ds

+
∫−d1

−d2

∫ t

t+s
xT (θ)d2Q3x(θ)dθ ds,

(3.19)

where

Π′
i =

⎡

⎢⎢
⎣

Pi −PiDi 0

−DT
i Pi DT

i PiDi 0

0 0 0

⎤

⎥⎥
⎦. (3.20)

Letting α > 0, for system (2.6), we can define another operator L[eαtV (t, x(t), i)] : R+×
Rn × S → R as follows:

L
[
eαtV (t, x(t), i)

]
= eαt[αV (t, x(t), i) + LV (t, x(t), i)]

≤ eαtξT (t)
[
αΠ′

i + Πi

]
ξ(t) +

∫ t

t−d(t)
xT (s)

[
α(Q1 + d2Q2) −

(
1 − μ

)
Q2
]
x(s)ds

+
∫−d1

−d2

∫ t

t+s
xT (θ)[αd2 − 1]Q3x(θ)dθ ds

+
∫ t

t−σ(t)
xT (s)

[
ασ2 − σ(1 − κ)(1 − ν)

]
Q4ds.

(3.21)
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Now, we can choose α > 0 sufficiently small such that

αλmax
(
Π′

i

)
+ λmax(Πi) < 0,

α(Q1 + d2Q2) −
(
1 − μ

)
Q2 < 0,

αd2 − 1 < 0,

ασ2 − σ(1 − κ)(1 − ν) < 0,

(3.22)

for i ∈ S.
By the weak infinitesimal operator along (2.6), it is obtained from (3.21) and (3.22)

that

eαtEV (t, x(t), i) ≤ EV (0, x(0), i) +
∫ t

0
EL[eαsV (s, x(s), i)]ds

≤ EV (0, x(0), i).

(3.23)

Using the definition of the Lyapunov functional (3.4) again, we have

EV (0, x(0), i) = E[x(0) −Dix(−d(0))]TPi[x(0) −Dix(−d(0))] +
∫0

−d(0)
ExT (s)Q1x(s)ds

+
∫0

−d(0)

∫0

s

ExT (θ)Q2x(θ)dθ ds +
∫−d1

−d2

∫0

s

∫0

θ

ExT (u)Q3x(u)dudθ ds

+ σ

∫0

−σ(0)

∫0

s

xT (θ)Q4x(θ)dθ ds

≤
[
2λmax(Πi) + d2λmax(Q1) + τ2λmax(Q2) + (d2 − d1)τ2λmax(Q3) + σ3λmax(Q4)

]

× sup
θ∈[−τ,0]

E
∣∣ϕ(θ)

∣∣2

� Mi,

(3.24)

for i ∈ S.
Thus, from (3.23) and (3.24), it follows that

E|x(t) −Dix(t − d(t))|2 ≤ 1
Θ
Me−αt, (3.25)

where Θ = mini∈S{λmin(Pi)} and M = maxi∈S{Mi}.
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From |Di| < 1 (i ∈ S), we obtain that there exist a positive scalar l > 0 such that
l = maxi∈S|Di| < 1. So, for all ε ∈ (0,min{α,−(2/τ) log |l|}) and any θ > 0, by using the
elementary inequality, we derive

eεtE|x(t)|2 = eεtE|x(t) −Dix(t − d(t)) +Dix(t − d(t))|2

≤ (1 + θ)eεtE|x(t) −Dix(t − d(t))|2 +
(
1 +

1
θ

)
eεtE|Dix(t − d(t))|2

≤ 1 + θ

Θ
Me−(α−ε)t +

(
1 +

1
θ

)
eεtE|Dix(t − d(t))|2

≤ 1 + θ

Θ
M + l2

(
1 +

1
θ

)
eετeε(t−τ(t))E|x(t − d(t))|2.

(3.26)

From for all ε ∈ (0,min{α,−(2/τ) log |l|}), we have l2eετ < 1. Thus, we can choose θ suffi-
ciently large such that

Δ � l2
(
1 +

1
θ

)
eετ < 1. (3.27)

So,

eεtE|x(t)|2 ≤ 1 + θ

Θ
M + Δeε(t−d(t))E|x(t − d(t))|2. (3.28)

For all T > 0, from (3.28), it follows that

sup
0≤t≤T

[
eεtE|x(t)|2

]
≤ 1 + θ

Θ
M + ΔE

∣∣ϕ
∣∣2 + Δ sup

0≤t≤T

[
eεtE|x(t)|2

]
, (3.29)

that is,

sup
0≤t≤T

[
eεtE|x(t)|2

]
≤ ((1 + θ)/Θ)M + ΔE

∣∣ϕ
∣∣2

1 −Δ
. (3.30)

When T → +∞, it follows from (3.30) that

sup
0≤t<∞

[
eεtE|x(t)|2

]
≤ ((1 + θ)/Θ)M + ΔE

∣∣ϕ
∣∣2

1 −Δ
. (3.31)

So, we can obtain

E|x(t)|2 ≤ ((1 + θ)/Θ)M + ΔE
∣∣ϕ
∣∣2

1 −Δ
e−εt. (3.32)

The proof of this theorem is completed.
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Theorem 3.2. Suppose that Assumptions 2.1–2.4 hold and for any given positive scalar κ ∈ (0, 1), the
uncertain neutral stochastic systems with mixed delays and Markovian switching (2.3) are robustly
exponentially stable in mean square if there exist λi > 0 (i ∈ S), ε1i > 0, ε2i > 0 (i ∈ S), and some
positive definite matrices Pi > 0 (i ∈ S) and Ql > 0 (l = 1, 2, . . . , 10) such that the following linear
matrix inequalities (LMIs) are satisfied:

Pi < λiI, i ∈ S,

Ωi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 0 Ω14 Ω15 Ω16 Ω17 Ω18 Ω19 Ω110 0

∗ Ω22 0 0 0 0 Ω27 Ω28 Ω29 0 Ω211

∗ ∗ Ω33 0 0 0 0 0 0 0 0

∗ ∗ ∗ Ω44 Ω45 Ω46 0 0 0 0 0

∗ ∗ ∗ ∗ Ω55 Ω56 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ω66 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 Ω78 Ω79 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88 Ω89 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1iI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2iI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, i ∈ S,
(3.33)

where ∗ denotes the entries that are readily inferred by symmetry of a symmetric matrix and

Ω11 = PiA1i +AT
1iPi +

N∑

j=1

γijPj + λiR
T
1iR1i + LT (Q5 +Q8)L +Q1 + d2Q2 +

1
2

(
d2
2 − d2

1

)
Q3

+ σ2Q4 + (ε1i + ε2i)NT
1iN1i,

Ω12 = AT
1iPiDi −

N∑

j=1

γijPjDi, Ω14=PiA2i+ε1iNT
1iN2i, Ω15 = PiA3i + ε1iN

T
1iN3i, Ω110 = PiMi,

Ω16 = PiA4i + ε1iN
T
1iN4i, Ω17 = ε2iN

T
1iN2i, Ω18 = ε2iN

T
1iN3i, Ω19 = ε2iN

T
1iN4i,

Ω22 = LT (Q6 +Q9)L +
N∑

j=1

γijD
T
i PjDi + λiR

T
2iR2i −

(
1 − μ

)
Q1, Ω27 = DT

i PiA2i,

Ω28 = DT
i PiA3i, Ω29 = DT

i PiA4i, Ω211 = DT
i PiMi,

Ω33 = LT (Q7 +Q10)L + λiR
T
3iR3i − κ(1 − υ)Q4, Ω44 = −Q5 + ε1iN

T
2iN2i, Ω45 = ε1iN

T
2iN3i,

Ω46 = ε1iN
T
2iN4i, Ω55 = −Q6 + ε1iN

T
3iN3i, Ω56 = ε1iN

T
3iN4i, Ω66 = −Q7 + ε1iN

T
4iN4i,

Ω77 = −Q8 + ε2iN
T
2iN2i, Ω78 = ε2iN

T
2iN3i, Ω79 = ε2iN

T
2iN4i,

Ω88 = −Q9 + ε2iN
T
3iN3i, Ω89 = ε2iN

T
3iN4i, Ω99 = −Q10 + ε2iN

T
4iN4i.

(3.34)
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Proof. ReplacingA1i,A2i,A3i, andA4i in (3.2)withA1i +ΔA1i(t),A2i +ΔA2i(t),A3i +ΔA3i(t),
and A4i + ΔA4i(t), ΔA1i(t), ΔA2i(t), ΔA3i(t), ΔA4i(t) are described in (2.4) and (2.5), in view
of Lemma 2.9 and Lemma 2.10, we obtain

Πi(t) = Πi + ΞT
i Fi(t)E1i + ET

1iF
T
i (t)Ξi + ΨT

i Fi(t)E2i + ET
2iF

T
i (t)Ψi

= Πi + ε−11i ΞiΞT
i + ε1iE

T
1iE1i + ε−12i ΨiΨT

i + ε2iE
T
2iE2i

= Ωi < 0,

(3.35)

where

Ξi = [MT
i Pi 0 0 0 0 0 0 0 0]

T
, Ψi = [0 MT

i PiDi 0 0 0 0 0 0 0]
T
,

E1i = [NT
1i 0 0 NT

2i N
T
3i N

T
4i 0 0 0]

T
, E2i = [NT

1i 0 0 0 0 0 NT
2i N

T
3i N

T
4i]

T
,

(3.36)

where ε1i > 0 and ε2i > 0, for any i ∈ S. The proof of the remainder can be easily finished by
following a similar line as in the proof of Theorem 3.1. The proof is completed.

Remark 3.3. The delay-dependent sufficient conditions ensuring the robustly exponential
stability in mean square of the uncertain neutral stochastic systems with mixed delays and
Markovian switching (2.3) are provided in Theorem 3.2. It should be pointed out that such
conditions are given in the form of LMIs, which could be easily solved by using the standard
software packages. Besides, the criteria derived are dependent upon both the upper and
lower bound of the time-varying delay and the distributed delay, which are less conservative.

Remark 3.4. Besides, by the Borel-Cantelli Lemma, we can also obtain the almost surely
exponential stability of systems (2.3). Here, for the sake of brevity, we omit it and the readers
can refer to [17]. Besides, we can easily come to a conclusion that the uncertain neutral
stochastic delay systems with mixed delays and Markovian jumping parameters (2.3) are
asymptotically stable in mean square from the conditions |Di| < 1 (i ∈ S). Thus, the results
given in [15] are generalized.

Case 1. Consider the problem of delay-dependent robust exponential stability for a special
case of the uncertain neutral stochastic systems with mixed delays and Markovian switching
in (2.6), that is,

d[x(t) −Dix(t − d(t))]

=

[

A1i(t) x(t) +A2i(t)f(x(t) ) +A3i(t)f(x(t − d(t))) +A4i(t)
∫ t

t−σ(t)
f(x(s))ds

]

dt

+

[

A5i(t)x(t) +A6i(t)x(t − d(t)) +A7i(t)
∫ t

t−σ(t)
x(s)ds

]

dB(t), t ≥ 0,

(3.37)
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whereA1i(t),A2i(t),A3i(t), andA4i(t) are given in (2.3), whileA5i(t),A6i(t), andA7i(t) are of
the following form:

[A5i(t) A6i(t) A7i(t)] = [A5i A6i A7i] +MiFi(t)[N5i N6i N7i], (3.38)

where A5i, A6i, A7i, Mi, N5i, N6i, and N7i (i ∈ S) are known constant matrices. For systems
(3.37), we can also obtain the robust exponential stability. The proof can be easily established
by following a similar line as in the proof of Theorem 3.1 and then is omitted here.

Theorem 3.5. Suppose that Assumptions 2.1 and 2.2 hold and for any given positive scalar κ ∈
(0, 1), the uncertain neutral stochastic systems with mixed delays and Markovian switching (3.37)
are robustly exponentially stable in mean square if there exist λi > 0, ε1i > 0, ε2i > 0, ε3i > 0 (i ∈ S)
and some positive definite matrices Pi > 0 (i ∈ S) and Qi > 0 (i = 1, 2, . . . , 10) such that the following
linear matrix inequalities (LMIs) are satisfied:

Pi ≤ λiI, i ∈ S,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ11 Γ12 Γ13 Γ14 Γ15 Γ16 0 0 0 AT
5iPi PiMi 0 0

∗ Γ22 Γ23 0 0 0 Γ27 Γ28 Γ29 AT
6iPi 0 DT

i PiMi 0

∗ ∗ Γ33 0 0 0 0 0 0 AT
7iPi 0 0 0

∗ ∗ ∗ Γ44 Γ45 Γ46 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ Γ55 Γ56 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ66 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Γ77 Γ78 Γ79 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ88 Γ89 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ99 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Pi 0 0 PiMi

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1iI 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2iI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε3iI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

< 0,
(3.39)

where ∗ denotes the entries that are readily inferred by symmetry of a symmetric matrix and

Γ11 = PiA1i +AT
1iPi +

N∑

j=1

γijPj + LT (Q5 +Q8)L +Q1 + d2Q2 +
1
2

(
d2
2 − d2

1

)
Q3 + σ2Q5

+ ε1iN
T
1iN1i + ε3iN

T
5iN5i,

Γ12 = AT
1iPiDi −

N∑

j=1

γijPjD
T
i + ε3iN

T
5iN6i, Γ13 = ε3iN

T
5iN7i, Γ14 = PiA

T
2i + ε1iN

T
1iN2i,

Γ15 = PiA3i + ε1iN
T
1iN3i, Γ16 = PiA4i + ε1iN

T
1iN4i,
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Γ22 = LT (Q6 +Q9)L +
N∑

j=1

γijD
T
i PjDi −

(
1 − μ

)
Q1 + ε3iN

T
6iN6i, Γ23 = ε3iN

T
6iN7i,

Γ27 = DT
i PiA2i, Γ28 = DT

i PiA3i, Γ29 = DT
i PiA3i,

Γ33 = LT (Q7 +Q10)L − κ(1 − ν)Q5 + ε3iN
T
7iN7i, Γ44 = −Q5 + ε1iN

T
2iN2i, Γ45 = ε1iN

T
2iN3i,

Γ46 = ε1iN
T
2iN4i, Γ55 = −Q6 + ε1iN

T
3iN3i, Γ56 = ε1iN

T
3iN4i, Γ66 = −Q7 + ε1iN

T
4iN4i,

Γ77 = −Q8 + ε2iN
T
2iN2i, Γ78 = ε2iN

T
2iN3i, Γ79 = ε2iN

T
2iN4i, Γ88 = −Q9 + ε2iN

T
3iN3i,

Γ89 = ε2iN
T
3iN4i, Γ99 = ε2iN

T
4iN4i.

(3.40)

Case 2. When σ = 0, the uncertain neutral stochastic systems (2.3) are described as

d[x(t) −Dix(t − d(t))] =

[

A1i(t)x(t) +A2i(t)f(x(t)) +A3i(t)f(x(t − d(t)))

+ A4i(t)
∫ t

t−σ(t)
f(x(s))ds

]

dt, t ≥ 0.

(3.41)

Theorem 3.6. Suppose that Assumptions 2.1 and 2.2 hold and for any given positive scalar κ ∈
(0, 1), the uncertain neutral stochastic systems with mixed delays and Markovian switching (3.41)
are robustly exponentially stable in mean square if there exist λi > 0 (i ∈ S), εi > 0 (i ∈ S) and some
positive definite matrices Pi > 0 (i ∈ S) and Qi > 0 (i = 1, 2, . . . , 10) such that the following linear
matrix inequalities (LMIs) are satisfied: for i ∈ S,

Ωi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 0 Ω14 Ω15 Ω16 Ω17 Ω18 Ω19 Ω110 0

∗ Ω22 0 0 0 0 Ω27 Ω28 Ω29 0 Ω211

∗ ∗ Ω33 0 0 0 0 0 0 0 0

∗ ∗ ∗ Ω44 Ω45 Ω46 0 0 0 0 0

∗ ∗ ∗ ∗ Ω55 Ω56 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ω66 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 Ω78 Ω79 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88 Ω89 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1iI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2iI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, i ∈ S, (3.42)
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where ∗ denotes the entries that are readily inferred by symmetry of a symmetric matrix and

Ω11 = PiA1i +AT
1iPi +

N∑

j=1

γijPj + LT (Q5 +Q8)L +Q1 + d2Q2 +
1
2

(
d2
2 − d2

1

)
Q3 + σ2Q4

+ (ε1i + ε2i)NT
1iN1i,

Ω22 = LT (Q6 +Q9)L +
N∑

j=1

γijD
T
i PjDi −

(
1 − μ

)
Q1, Ω27 = DT

i PiA2i,

Ω33 = LT (Q7 +Q10)L − κ(1 − υ)Q4,

(3.43)

and Ω12, Ω14, Ω15, Ω16, Ω17, Ω18, Ω19, Ω27, Ω28, Ω29, Ω33, Ω44, Ω45, Ω46, Ω55, Ω56, Ω66, Ω77, Ω78,
Ω79, Ω88, Ω89, and Ω99 are given in Theorem 3.2.

Remark 3.7. The sufficient conditions ensuring the exponential stability in mean square of
the uncertain neutral delay systems with Markovian jumping parameters in [39, 40] are
dependent upon the upper bound of the exponential stability rate. But, Theorem 3.6 can
remove this restrictive conditions. So, we can improve and generalize the results in [39, 40].

4. Numerical Examples

In this section, two examples are provided to illustrate the feasibility and applicability of our
obtained results.

Example 4.1. Consider the case of 2D Brownian motion, and r(t) is right-continuous
Markovian chain taking values in S = {1, 2} with its generator Γ =

[ −3 3
4 −4

]
. And the param-

eters in systems (2.3) are given as follows:

A11 =

[−1.5 0

0 −1.8

]

, A12 =

[−1.8 0

0 −1.8

]

, A21 =

[
0.3 0.2

−0.6 −0.8

]

, A22 =

[
0.6 −0.5
−0.4 −0.3

]

,

A31 =

[−0.7 −0.5
0.4 0.6

]

, A32 =

[
0.7 0.5

−0.3 0.3

]

, A41 =

[
0.2 0.3

−0.1 0.2

]

, A42 =

[
0.3 0.2

−0.2 0.4

]

,

D1 =

[−0.2 0.0

1.0 0.1

]

, D2 =

[
0.1 0.0

0.7 0.2

]

, M1 =

[
0.1 0.2

0.0 0.1

]

, M2 =

[
0.2 0.1

0.1 0.2

]

,

N11 = N12 = N21 = N22 = N31 = N32 = N41 = N42 =
[
0.1 0.1

]
.

(4.1)

The delays d(t) = 0.45 sin(t)+0.3, σ(t) = 0.4 cos(t)+0.4, and it is easily obtained that d1 = 0.15,
d2 = 0.75, μ = 0.45, ν = 0.4, and σ = 0.8. Assume that the activation function f satisfies
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Assumption 2.1 with the Lipschitz coefficient matrix L =
[
0.2 0.0
0.0 0.2

]
and the function σ satisfies

Assumption 2.2 with the matrices Rij (i = 1, 2; j = 1, 2, 3) given by

R11 =

[
0.15 0.0

0.20 0.35

]

, R12 =

[
0.5 0.1

0.28 0.20

]

, R21 =

[
0.3 0.0

0.2 0.1

]

, R22 =

[
0.1 0.0

0.2 0.1

]

,

R31 =

[
0.1 0.2

0.1 0.2

]

, R32 =

[
0.1 0.1

0.2 0.1

]

.

(4.2)

With the parameters above, when κ = 0.9999, by using Matlab LMI Toolbox, according to
Theorem 3.2, we solve LMIs (3.33) and obtain there feasible solutions as follows:

P1 =

[
70.0930 12.2285

12.2285 21.8248

]

, P2 =

[
74.1549 15.4873

15.4873 20.7284

]

, Q1 =

[
134.4662 25.4223

25.4223 20.5296

]

,

Q2 =

[
1.8693 −0.0065
−0.0065 0.6213

]

, Q3 =

[
4.8828 −0.0153
−0.0153 1.6598

]

, Q4 =

[
16.7672 −0.0153
−0.0153 1.6598

]

,

Q5 =

[
117.1703 −17.8696
−17.8696 119.1560

]

, Q6 =

[
114.7061 67.0438

67.0438 91.0274

]

, Q7 =

[
58.3284 23.0811

23.0811 70.1310

]

,

Q8 =

[
57.0181 12.7280

12.7280 58.0073

]

, Q9 =

[
41.6921 14.6919

14.6919 40.8478

]

, Q10 =

[
40.5029 −0.2295
−0.2295 33.2920

]

,

λ1 = 75.3750, λ2 = 80.6197, ε11 = 66.1002, ε12 = 97.9532, ε21 = 47.7433, ε22 = 56.9671.
(4.3)

Example 4.2. Let r(t) be right-continuous Markovian chain taking values in S = {1, 2}with its
generator Γ =

[ −2 2
1 −1

]
. Consider the following uncertain neutral systems with mixed delays

and Markovian switching: for any i ∈ S,

d

dt
[x(t) −Dix(t − d(t))] = A1i(t)x(t) +A2i(t)x(t − d(t)), t ≥ 0, (4.4)

where

A11 = A12 =

[−2 0.0

0.0 −3

]

, A21 = A22 =

[−1 0

−1 −1

]

, D1 =

[
0.3 0

0 0.3

]

,

D2 =

[
0.1 0.0

0.0 0.1

]

, M1 =

[
0.1 0.1

0.2 0.1

]

, M2 =

[
0.2 −0.1
0.1 0.1

]

,

N11 =
[
0.1 0.0

]
, N12 =

[
0.0 0.1

]
, N21 =

[−0.0 0.1
]
, N22 =

[
0.1 0.1

]
.

(4.5)
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ApplyingMatlab toolbox, by Theorem 3.6, for μ = 0, it can be obtained that the uncertain neu-
tral systems with delays andMarkovian jumping parameters (4.4) are robustly exponentially
stable in mean square with the delay d(t) satisfying 0 ≤ d(t) ≤ 6.0 × 1017.

5. Conclusions

In this paper, the exponential stability in mean square of the uncertain neutral stochastic
systems with mixed delays and Markovian jumping parameters has been considered.
The mixed delays consist of the discrete delay and the distributed delay. The LMI-based
conditions ensuring the exponential stability in mean square of such systems are obtained
by constructing an appropriate Lyapunov functional, which are dependent upon the upper
bound and lower bound of the discrete time delays and distributed delays. It is worth
pointing out that, compared with the previous works [17, 18], the stability criteria in this
paper can be easily checked by using some standard numerical packages. Two illustrative
examples are provided to show the effectiveness and applicability of the proposed results.
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