Academic Editor: M. Lakshmanan
Copyright © 2013 Yongsheng Mi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We are concerned with the Cauchy problem of two-component Novikov equation, which was proposed by Geng and Xue (2009). We establish the local well-posedness in a range of the Besov spaces by using Littlewood-Paley decomposition and transport equation theory which is motivated by that in Danchin's cerebrated paper (2001). Moreover, with analytic initial data, we show that its solutions are analytic in both variables, globally in space and locally in time, which extend some results of Himonas (2003) to more general equations.