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We are concerned with the Cauchy problem of two-component Novikov equation, which was proposed by Geng and Xue (2009). We
establish the local well-posedness in a range of the Besov spaces by using Littlewood-Paley decomposition and transport equation
theory which is motivated by that in Danchin’s cerebrated paper (2001). Moreover, with analytic initial data, we show that its
solutions are analytic in both variables, globally in space and locally in time, which extend some results of Himonas (2003) to

more general equations.

1. Introduction

In this paper, we consider the following Cauchy problem of
the two-component Novikov equation

m, +uvm, +3vu,m =0, t>0, x €R,
n,+uvn, +3uv,n=0, t>0, xR,
@
m=u—u,, n=v-v,, t>0, x€R,

u(0,x) =uy(x), v(O0,t)=v,(x), xeR.

The two-component system in (1) was found by Geng and
Xue [1]. It was shown in [1] that the system (1) is exactly a
negative flow in the hierarchy and admits exact solutions with
N-peakons and an infinite sequence of conserved quantities.
Moreover, a reduction of this hierarchy and its Hamiltonian
structures are discussed.

For v = 1, (1) becomes the Degasperis-Procesi equation

m,+um, +3um=0, t>0, xR,
m=u-u,, t>0, xeR, (2)
u(0,x) =uy(x), xeR.

Degasperis et al. [2] proved the formal integrability of
(2) by constructing a Lax pair. They also showed that it
has bi-Hamiltonian structure and an infinite sequence of
conserved quantities and admits exact peakon solutions. The
direct and inverse scattering approach to pursue it can be
seen in [3]. Moreover, in [4], they also presented that the
Degasperis-Procesi equation has a bi-Hamiltonian structure
and an infinite number of conservation laws and admits
exact peakon solutions which are analogous to the Camassa-
Holm peakons. It is worth pointing out that solutions of this
type are not mere abstractizations: the peakons replicate a
feature that is characteristic for the waves of great height-
waves of the largest amplitude that are exact solutions of
the governing equations for irrotational water waves (cf. the
papers [5-7]). The Degasperis-Procesi equation is a model
for nonlinear shallow water dynamics (cf. the discussion
in [8]). The numerical stability of solitons and peakons,
the multisoliton solutions, and their peakon limits, together
with an inverse scattering method to compute N-peakon
solutions to Degasperis-Procesi equation, have been investi-
gated, respectively, in [9-11]. Furthermore, the traveling wave
solutions and the classification of all weak traveling wave
solutions to Degasperis-Procesi equation were presented in
[12,13].



For u = v, (1) becomes the Novikov equation

mt+u2mx+3uuxm:O, t>0, x€R,
m=u-u,, t>0, xeR, (3)
u(0,x) =uy,(x), xeR,

which has been recently discovered by Vladimir Novikov in
a symmetry classification of nonlocal PDEs with quadratic or
cubic nonlinearity [14]. The perturbative symmetry approach
yields necessary conditions for a PDE to admit infinitely
many symmetries. Using this approach, Novikov was able
to isolate (3) and find its first few symmetries, and he
subsequently found a scalar Lax pair for it, then proved
that the equation is integrable, which can be thought as a
generalization of the Camassa-Holm equation. In [15], it is
shown that the Novikov equation admits peakon solutions
like the Camassa-Holm. Also, it has a Lax pair in matrix form
and a bi-Hamiltonian structure. Furthermore, it has infinitely
many conserved quantities, like Camassa-Holm. The most
important quantity conserved by a solution u to Novikov
equation is its H ' norm ||u||§{1 = IR(uZ + ui), which plays
an important role in the study of (1). In [16-19], the authors
study well-posedness and dependence on initial data for the
Cauchy problem for Novikov equation. Recently, in [20], a
global existence result and conditions on the initial data were
considered. Existence and uniqueness of global weak solution
to Novikov equation with initial data under some conditions
was proved in [21]. The Novikov equation with dissipative
term was considered in [22]. Multipeakon solutions were
studied in [15, 23]. The Cauchy problem of the Novikov
equation on the circle was investigated in [24]. An alternative
modified Camassa-Holm equation was introduced in [25].

Motivated by the references cited above, the goal of the
present paper is to establish the local well-posedness for
the strong solutions to the Cauchy problem (1). The proof
of the local well-posedness is inspired by the argument
of approximate solutions by Danchin [26] in the study of
the local wellposedness to the Camassa-Holm equation.
However, one problematic issue is that we here deal with
two-component system with a higher order nonlinearity
in the Besov spaces, making the proof of several required
nonlinear estimates somewhat delicate. These difficulties are
nevertheless overcome by careful estimates for each iterative
approximation of solutions to (1). Moreover, we also prove the
analyticity of its solutions # = u(t, x) in both variables, with
x in R and ¢ in an interval around zero, provided that the
initial profile 1 is an analytic function on the real line. Hence,
this analytic result can be viewed as a Cauchy-Kowalevski
theorem for (1).

Now we are in the position to state the local existence
result and analyticity result, where the definition of Besov
spaces B, ., E;, (T), and and E, will be given in Sections 2
and 3.

Theorem 1. Let p,r € [1,00] and s > max{5/2,2 + (1/p)}.
Assume that (ug,vo) € B}, x B,, . There exists a time T > 0
such that the initial-value problem (1) has a unique solution
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(u,v) € E;’,(T) X E;’T(T) and the map (uy,vy) — (U, v) is
continuous from a neighborhood of (ug, vy) in B, . x B, into

c(10.71:B,, ) nc' (10,71; B;,")
(4)
xC(10,71;B,,)nC' ([0,T1; B},

! !
foreverys < swhenr =00ands =swhereasr < 0o.

Theorem 2. If the initial data () is real analytic on the line
R and belongs to a space E, , for some 0 < sy < 1, then there
exist an € > 0 and a unique solution () to the Cauchy problem
(1) that is analytic on (=&, &) x R.

The rest of this paper is organized as follows. In Section 2,
we prove the local well-posedness of the initial value problem
(1) in the Besov space. Section 3 is devoted to the study of the
analyticity of the Cauchy problem (1) based on a contraction
type argument in a suitably chosen scale of the Banach spaces.

2. Local Well-Posedness in the Besov Spaces

In this section, we will establish local well-posedness of the
initial value problem (1) in the Besov spaces.

First, for the convenience of the readers, we recall some
facts on the Littlewood-Paley decomposition and some useful
lemmas.

Notation. § stands for the Schwartz space of smooth func-
tions over R? whose derivatives of all order decay at infinity.
The set &' of temperate distributions is the dual set of & for
the usual pairing. We denote the norm of the Lebesgue space
LP(R)by|l - l;» with 1 < p < 00, and the norm in the Sobolev
space H'(R) with s € R by || - || .

Proposition 3 (Littlewood-Paley decomposition [27]). Let
B={EeRY |E| < 4/3}and € = (£ € RY, 4/3 < |E| < 8/3}.
There exist two radial functions y € C.°(%) and ¢ € C°(6)
such that

XO+Ye27%) =1, VEeR,

q=0

'q - q" >2 = Suppg (27%:) N Supp ¢ (2"1’.) =9,
: (5)
g>1=> Supp x(-) N Supp ¢ (z,q ) -0,

<x@+ Y p(2%) <1, VEeR”

q=0

W | =

Furthermore, let h = F '@ and h = F'y. Then for all

f e 8'(R?), the dyadic operators A qand S, can be defined as
follows:
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Af=9(2D) f

= JRdh(qu)f(x—y) dy forq=0,

S,.f=x(27D) f 6)
= ) A=2" JRﬁ(qu)f(x ~y)dy,
~1gk<q-1
AL f=S,f, Ayf=0 forg<-2.
Hence,
f= ;)Aqf in 8" (R), )

where the right-hand side is called the nonhomogeneous
Littlewood-Paley decomposition of f.

Lemma 4 (Bernstein’s inequality [28]). Let 9 be a ball with
center 0 in R and € a ring with center 0 in R?. A constant C
exists so that, for any positive real number A, any nonnegative
integer k, any smooth homogeneous function o of degree m, and
any couple of real numbers (a,b) with b > a > 1, there hold

Suppii ¢ A%

— sup ||azxu||La < Ck+1/\k+d((1/a)_(1/b))||u||La,

la|=k

Suppii C A€
(8)

1o < C A ull o,

= C* "M |ulle < sup|o®u
lal=k

Supp i c A®
= [lo (D) ullpp < Cy,, A" DDy,
for any function u € L°.

Definition 5 (Besov space). Let s € R,1 < p,r < oo.
The inhomogeneous Besov space B;J(Rd) (B;), for short) is
defined by

B;)ri{feé"(ﬂ%d); |7

5, < oo}, ©)

where

1/r
Az bats) -

for r < 0o,
11, = 1 \aez (10)
sup2? Aqf"L , for r = co.
qeZ P
Ifs = 00, By = NyerB), -

Proposition 6 (see [28]). Supposethats € R, 1 < p,r, p;,1; <
o0 (i = 1,2). One has the following.

(1) Topological properties: B;J is a Banach space which is
continuously embedded in S'.

3
(2) Density: CZ° is dense in B),, & 1 < p, r < co.
(3) Embedding: B,, . — B;:’,il/pl)_(l/pz), if py < p, and

ry <1,
By, — By locally compact, if s; <s,.
(4) Algebraic properties: for all s > 0, B, 0 L% is an
algebra. Moreover, B, is an algebra, provided that
s>n/pors=n/pandr = 1.

(5) Complex interpolation:

el B9

(11)

< Clully, luly!, Vu € B, 0 B3, v0 € [0,1].

pr

(6) Fatou lemma: If (u,,),,cy is bounded in B;’r and u, —
uinS', thenu € B;)r and

"u”B‘;J < hnrgio%f”un B, (12)

(7) Letm € R and fbe an S™-multiplier (i.e., f : RY 5 R
is smooth and satisfies that for all o € N, there exists
a constant C,, s.t. [0° f(E)| < C, (1 + |E/™) for all

& € RY). Then the operator f(D) is continuous from
B,, toB, "

Now we state some useful results in the transport equa-
tion theory, which are crucial to the proofs of our main
theorems later.

Lemma 7 (see [26, 28]). Suppose that (p,r) € [1, +00]? and
s > —(d/p). Let v be a vector field such that Vv belongs to
L0, T]; BS)) if s > 1+ (d/p) or to L'(0,T); By 0 L)
otherwise. Suppose also that f, € B, , F € Ll([O,T];B;’T)
and that f € L™(L'([0, T];B;J) N C([0,T]; S") solves the d-

dimensional linear transport equations
O, f +v-Vf =F,
flt:() = fO'

Then there exists a constant C depending only on s, p, and d
such that the following statements hold.

(T)

(1) Ifr=1ors#1+(d/p), then

”f"B;m <|f B, t L ||F(T)||Bi”dr
(13)

t
+C| VI @IF @Iy, dr
or

t
If o [ TN dr) 00

B, S e <||f 0




t )
hold, where V (t) = _[0 ”VV(T)”BZ{,PandT ifs < 1+(d/p)
and V(t) = ,[(: ||Vv(1)||B;-rldT else.

() If s < 1+ (d/p) and Vf, € L, Vf € L*([0,T] x RY)
and VF € L'([0, T]; L), then

B, t VAl

(1l

If

5, * IVfoll (15)
t
+ .[0 e_CV(‘r) |F (T)"B;N +|VF (T)"LoodT)

with V(1) = [ IV el

(3) If f = v, then for all s > 0, the estimate (14) holds with
V() = [, IVv(Dlgdr.

4) Ifr < +oo, therf f e C([o, T];B;r)
f e C(lo, T];B;,r)for alls' < s.

dfr = +oo, then

Lemma 8 (existence and uniqueness see [26, 28]). Let
(p, py»7) € [1,+00) and s > —dmin{1/p,, 1/p'} with p’ =
(1-(1/p)™". Assume that f, € B;, , F € L'([0,T}; B}, ,). Let v
be a time-dependent vector field such thatv € LP([0,T]; B;OAfOO)
for some p > 1, M > 0 and Vv € L'([0, T); B, d/p N L®) if
s<1+(d/p)and Vv € LY([0, TT; BS 1 )ifs > 1+ (d/p) or
s=1+(d/p,) andr = 1. Then the tmnsport equations (T') have
a unique solution f € L*([0,T]; B ) N (NyC[O ,T];B;I’I)
and the inequalities in Lemma 7 hold true. Moreover, r < 00,
then one has f € C[0, T];B;)l)

Lemma 9 (1-D Morse-type estimates [26, 28]). Assume that
1 < p, r < +00, the following estimates hold.

(i) Fors > 0,

179l < € (Il Nl + Nols, 1) (16)
(ii) Foralls, <1/p < s, (s, = 1/pifr =1)and s, +s, > 0,
one has
|fallz, < CllA g N9llz - (17)
(iii) In Sobolev spaces H' = B; ,, one has for s > 0,
109l < CUflprllglie + 10xgliel fl) > (8)

where C is a positive constant independent of f and g.
Definition 10. ForT > 0,s € Rand 1 < p < +00, we set

E,, (T) £ C([0,T];B;,,)nC' ([0,T];B})) if r < +oo,

pr
E . (T) 2 L ([O, T] ;B;OO) n lip1 ([0, T] ,B;_Olo) ,

E,, 2 NpyoE,, (T).
(19)
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In the following, we denote C > 0 a generic constant
only depending on p, r, s. Uniqueness and continuity with
respect to the initial data are an immediate consequence of
the following result.

Proposition 11. Let 1 < p, r < +00 and s > max{5/2,2 +
(1/p)}. Suppose that (u®;v?) € {L*([0,T]; B,) n C([0,T];
oS")}2 (i = 1,2) be two given solutions of the initial-value
problem (1) with the initial data (ug),v(()’)) € B;)r X B;J (i =
1;2). Then for every t € [0; T], one has

1 2 1 2
[« @ = . + [ © =P O
por
( 2 (1) (2
< ("”o —Uy g T "v -V BH)
pr pr
xexp{C j (Ju> @[, -+
A @l + )dT}
(20)
Proof. Denote u1? = @ 02 = )@ 1) 4,00
m® —mM and n"? = n® - nD 1t is obvious that

u(lz), V(lz) € LOO ([0> T] ;B;,r> nc ([0’ T] ; é),) ’ (21)

which implies that 412 12« (|o, T];B;rl) and (u"'?,

v(u), mm), m(lz)) solves the transport equations

mi1? 4y 0,010 _

(22)

(12) +u(1)v(1)n(12) G,

with
F=- (u(z)v(lz) +u

_3((2) (12)_ (2) 2,1 (12)

(12)v(1)) m?

X

m +u v'm uilz)v(l)m(l) 5

(23)
G=- (V(Z)u(n) +v

_3(1/562)”(12)”(2) @, 0,02

(12)u(1)) ng)
+vu'n vilz)u“)n(l)).
According to Lemma 7, we have

_C t ) (1), (Dye ! sad !
IO I (1)

-3
By

<t

-3
By;

t T (1), (D)t !
—C |, 10, @ v ) (7)) || gs—2dT
+ CJ e Ch i (||F||B;3>dr,

’ (24)

40!

e—CJ’ot||ax(u(1)v(1))(T’)"B;;’zd‘r H (12)

Bs3

< i

-3
B;,,

t_
+CJ e
0

C [y 1.V ()l o2 dr’
Js 1o B (||G||B;}3)d‘r,
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For s > max{5/2,2 + (1/p)}, by Lemma 9, we have

IE 1 p:»

— "_ (u(Z)V(IZ) + u(IZ)V(l)) mch)

43 (U@ 4y @O 4 1200

-3
By

12),,1) (2)

< C“u(z)v(u) +u

-3 -2
B By

12,

+ Cfu® m

-2 -3
By; By?

+ Cu®] |y

-2 -3
B;J B;J

(1, (1)

+ C“um) vm

52 53
B o B ot

B} )

L, + b

¢l

(]

IG5,
= - (vt +

o

—1
B;,r

@)

e

s s

) >
p,r

V(ll)u(l)) ﬂf)

+3 (12U 4 D002

+V u'n (12)14(1)1’1(1))

t+ v,

-3
By

< C“V(Z)M(IZ) + 12,0

(2) “
3|1 -
L L%

+ C“ (2) ” u1?4,@

2 -3
Bj; B

+ C“V(z)” OMC)

2 -3
B, B

N

|u(1) (1)

s—2 s—3
BP BPJ

By} )

+ v

(12)

< C("v (12)

v (||v

I,

)

+ ||u

s

(25)
Therefore, inserting the above estimates to (24), we obtain

4 (1) Dy !
e—CL,IIBx(u v )(T)IIBsP}zdr

x (”u‘”) )

(12)

+ [ @

B! )

-1
B;,y

<o

4

-1 -1
By, By

t T ), (1)t !

=C ), 10 v ) (@) s dr

+ CJ e Ch "pr
0

(b

(12)
+ |u
By} By}

o (P i R R e T
(26)

Hence, thanks to
o O, 2 (WO + 1) @

and then applying the Gronwall’s inequality, we reach (20).
O

Now let us start the proof of Theorem 1, which is moti-
vated by the proof of local existence theorem about the
Camassa-Holm equation in [26]. Firstly, we will use the
classical Friedrichs' regularization method to construct the
approximate solutions to the Cauchy problem (14).

Lemma 12. Assume that u® = %) = 0. Let 1 < p, r < +0o0,
s > max{5/2,2 + (1/p)} and uy, v, € B . Then there exists

a sequence of smooth functions (u(l),v(l)),EN € C(R"; B°°)
solving the following linear transport equation by mductzon

(3 + (uO¥0),) m*D
3vl)u(l m() t>0, xeR

3, + (u®v0)3,) nV
(00 ()0} "

3u(l)v( b, >0, xeR

u®y (x,0) = uf)lﬂ) (x) =S4y, x€R,

V(l+1) (x) 0) — V(()l+1) (x) — Sl+1V0’ x € R.

Moreover, there is a positive T such that the solutions satisfying
the following properties:

() @?, v(l))leN is uniformly bounded in E;’r(T) X ES (T),

(ii) (u(l), v(l))leN is a Cauchy sequence in C([0,T7; BS 1) X
C([0,T; B,,).

Proof. Since all the data S, ,u, and S,,,v, belong to B;f’,,
Lemma 8 enables us to show by induction that for all [ €
N, (28) has a global solution which belongs to C(R"; B;f’r)z.
Thanks to Lemma 7 and the proof of Proposition 11, we have
the following inequality for all / € N:

t !
e—cjo||ax(u<z)v<z))(fr)||3;}1dr D) )

-2
B;Yr

t (" W) Wy !
Bs2 +C J- e CIO 107V )"B;’_Vl ar
P 0

< ||mO

|'3V(l) Do dr,

BSZ



t
e W

-2
B;,y

t N M Wy ,

—-C B w

< ||mo||Bs,2 + CJ e Jo 10, v/ )(T)"B%} .
pr 0

||3u OO dr.

—2
By

(29)

Thanks to s > max{5/2,2 + (1/p)}, we find B
From this, one obtains

2 is an algebra.

||V(I)M§Cl)m B S C"V B2 m(l) - uil) By}
<o(l"l,, + "], )
5,
[0 o < c||u<l> L[ . vy B
3
(19"l + 1"l )

which along with the above inequality leads to

t (OO ]
e—CIOIIBx(u @ g1 dr
(I4+1)

y ("u (I+1) )

< ||u0

)

+ v

B
P

B;,

(31)

t T 1), (1), I
—C | llo. s—1d
+CJ . Jo 1o, @t YTl dv

0
3
2 ) dr.
B;,

(11,

s

Let us choose a T > 0 such that 4C(|| u0||Bs + Vo||Bs ) T
< 1, and suppose by induction that for all t € [0 T]

[ ol + 1"

o “B;r + v “B;W (32)

(1 - 4C(||u0 . B;J)Zt>1/2
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Indeed, since BS
any0 <7<t

is an algebra, one obtains from (32) that for

t
C L ||ax (u(”v(l)) (T’) B} dr’

o ’

e (1l 1ol ) o

o (ks bols,)

< 2
T 1—4C<||”0 . B;,r) t

- tin(1-4c(loly, + Il )’

_ zllln <1 - 4C( B;,)zt)'

And then inserting (33) and (32) into (31) leads to

[« ®,, +[»
“”‘0 B;, :
= 1/4
(1- 4ol + Il ) )
C
.

N
<1 - 4C(||u0||B;’r + “"0”3;) t)
) 2 \1/4
x J (1= 4(lell, + Irol, ) )

2
(ltols, + ol )
« P L T dr
(1= (1ol + Ik, ')
”uOHB;r + "V‘)“B;,r
< 2 \1/4
<1 —4C(||”0 : Bi,,r> t)
2
(ol + Il
X 1+CJ , ’ 2 5/4dT
0
(1-aC(Juolsy, + ol )')
“uo By, pr

NI
(1 - 4C(||u0||B;J + “"OHB;) t)

(34)
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Hence, one can see that

[ @, + @,
el + ol (59

2 1/2
(1-4C(lwolly, + Il ) t)

which implies that (u®,v"),.y is uniformly bounded in
C([0; T];B;,r) x C([0; T];B;,,,). Using the Moser-type esti-
mates (see Lemma 9), one finds that

403, m 1+1)|| < clut], (”uﬂ)“js;, + “V(l)";,,)’

||v“’u<”axn”“)||3 L < C“V”l)" <|]u(” HZBp + "V(l)”ja;,,)’

Hv(l) 0 ()” m(l)'B;jf ul

<

<

—2
By

- C(Ilu(”liBs + llv(”IIBs ).

)
U |B;;3

3
- C(Ilv(” IIB;,,, [l )

R e "

(36)
Hence, using (28), we have

(0", 0M) e C([0:T); B}, ) xC([0:T1;5 By,
(37)

leN

uniformly bounded, which yields that the sequence
w?, v(l))eN is uniformly bounded in E;J(T) X E;),(T).

Now, it suffices to show that (u(l),v(l)),EN is a Cauchy
sequence in C([0; T];B;;l) x C([0; T];B;rl). In fact, for all
I,k € N, from (28), we have

(at + (u(l+k)v(l+k)) ax) (m(l+k+l) _ m(l+1)) _ F,,

(38)
(at + (M(l+k)V(l+k)) P )(n(l+k+1) _ n(l+1)) _ GI
X >
with
FI - _ (Ll(l+k) (‘V(l+k) _ V(l)) 4 (u(l+k) _ u(l)) V(l)) mgcl+1)
-3 (u;k+l) (v(k+l) _ V(l)) m(k+l)
+ I/lgck+l)1/(l) (m(k+l) _ m(l))
+ (uikﬁ) _ uil)) V(l)m(l)) ,
39)
GI - _ (‘V(l+k) (u(l+k) _ u(l)) + (V(l+k) _ V(l)) u(l)) n;l+1)

-3 (vik-*—l) (u(k+l) _ u(l)) Yl(k+l)

k+l) () (. (k+] «
+vfc+)u()(n +)_n ))

NE L IOWINDY

7

Similar to the proof of Proposition 11, then for every t €
[0, T], we obtain

t
-C [ {10, @® VD) @ o de’
e por

« (u(u(kun)

+'|(V(k+l+1) B Vl+1) (t)”BH)

k+l+1)

~u ) O,

k+l+1)

< ”u (l+1)|| (l+1)“

L+

t T (VO] ! !
—C |y 10 @7 vEN (T )| gs—2dT
+C J. e Ch o
0

(=0 0, )
o (P T M e

e P I ML

(40)
Since (1, ))leN is uniformly bounded in ES (T) x ES (T)
and
(trkrt) (l I+k
+k+1 +1)
Uy = Skare1to = Sprtho = Z A gugs
q=1+1
(41)
(+k+1)  (1+1) e
+
Yo Vo = SkaVo — SiaVo = Z AqVO)
q=I+1

we get a constant C independent of [, k such that for all t €
[0’ T] b

”(u(k+l+1) B u(m)) (t)“B;j}

_ V(l+1)) (t)"B;;l

<Cr (2—71 " J-Ot (||(u(k+l) _ u(l)) (T)"B;;l

AW =) o), ) ).
o

Arguing by induction with respect to the index /, one can
easily prove that

+ || (v(k+l+1)

(42)

”(u(k+l+1) ) (t)|| -
n "(V(k+l+1) _ V(l+l)) (t)"Lm(Bﬂ)
7 \Bpr
(rcy)™ (43)
< O (1 )

TC)
C 2ql( T )
qz(:)



As | u(k)IIL%O(B;fl), I v(k)IILc%O(Br), and C are bounded indepen-

dently of k, there exists constant C. independent of I, k such
that

||(u(k+l+l) _ u(l+1)) (t)

L7 (B5)

+ "(V(kHH) - V(ZH)) (t)"LOO(BSfl) = CITZ_W-
T (Dpr

(44)

Thus, (u(l), v(l))neN is a Cauchy sequence in C([0, T; B;rl) X
([0, T); By). -

Proof of Theorem 1. Thanks to Lemma 12, we obtain that
(u®,v?),cy is a Cauchy sequence in C([O,T];B;rl) x C([0,
T];B;}l); so, it converges to some function (u,v) € C([0,
T); B;jrl) x C([0, T];B;;,l). We now have to check that (1, v)
belongs to E; A(T) x E;)r(T) and solves the Cauchy prob-
lem (1). Since (u®, v(l))leN is uniformly bounded in L*([0,
Tl; B;’r) x L=([0,T]; B;,r), according to Lemma 12, the Fatou

property for the Besov spaces (Proposition 6) guarantees that
(u, v) also belongs to

L ([0, T ;B;J) x L% ([0, T ;B;‘,) ) (45)

On the other hand, as (u(l),v(l))leN converges to (u,v)
in C([0,T]; B;rl) x C([0,T]; B;rl), an interpolation argu-
ment ensures that the convergence holds in C([0, T; B;:r) X
C(]o, T];B;”r), for any s' < s Ttis then easy to pass to the
limit in (28) and to conclude that (u, v) is indeed a solution to
the Cauchy problem (1). Thanks to the fact that u belongs to
L*([0,T]; B;)r) x L([0,T]; B;)T), the right-hand side of the
equation

o,m + uvo,m = =3vu,m (46)

belongs to L([0,T]; B,,), and the right-hand side of the
equation

oM + uvo,n = =3uv,.n (47)

belongs to L™([0, T']; B;,r). In particular, for the case r < 0o,
Lemma 8 enables us to conclude that (1, v) € C([0,T]; B;’,r) X
C([0,T]; B;”r) for any s’ < s. Finally, using the equation
again, we see that (d,u, 9,v) € C([0,T]; B;;,r) x C([0,T]; B;’J)
if r < 00, and L*([0, T];B;rl) x L*°(]0, T];B;,l) otherwise.
Therefore, (u,v) belongs to E A1) x ES (T). Moreover, a
standard use of a sequence of viscosity approximate solutions
(Ug» Vo) eso for the Cauchy problem (1) which converges uni-
formly in C([0, T]; B},) N C ([0, T); B;jj) x C([0,T]; B;,) N
C'([0,T); B;}l) gives the continuity of the solution (u, v) in
E,,, x E,, .. The proof of Theorem 1 is complete. O

3. Analyticity of Solutions

In this section, we will show the existence and uniqueness of
analytic solutions to the system (1) on the line R.

Advances in Mathematical Physics

First, we will need a suitable scale of Banach spaces as
follows. For any s > 0, we set

k|| 2k
s*|l0"u
E,={ueC®(R):||ull, = sup—" ”Hz
keN, k!/(k + 1)

>

(48)

where H*(R) is the Sobolev space of order two on the real
line R and N, is the set of nonnegative integers. One can easily
verify that E; equipped with the norm |||-]|, is a Banach space
and that, for any 0 < s’ < s, E is continuously embedded in
E s with

[eellly < el (49)

Another simple consequence of the definition is that any u in
E, is a real analytic function on R. Crucial for our purposes
is the fact that each E, forms an algebra under pointwise
multiplication of functions.

Lemma 13 (see [29]). Let0 < s < 1. There is a constant C > 0,
independent of s, such that for any u and v in E,, one has

[luvllls < Clllul [V (50)

Lemma 14 (see [29]). There is a constant ¢ > 0 such that for
any 0 < s' < s < 1, one has |||0,ullly < (C/(s = s'|ulll,
(1 =02 ullly < [lulllg and 111 - 32)'0,ullly < IMlulll,.

Theorem 15 (see [30]). Let {X }o..c; be a scale of decreasing
Banach spaces; namely, for any s' < s, one has X, ¢ Xy and
- g < - Ills. Consider the Cauchy problem

du

— =F(tu(t),
g~ F6u) 51

u(0) =0.

Let T, H, and C be positive constants, and assume that F
satisfies the following conditions.

() If for 0 < s < s < 1 the function t v u(t) is
holomorphic in |t| < T and continuous on |t| < T with
values in X, and

sup||fu ()Ills < H,
|t|sl; (52)

then t — F(t,u(t)) is a holomorphic function on |t| <
T with values in X .

(2) Forany 0 < s <s<1 and any u, v € B(0,H) ¢ X,,
that is, |||ulll, < H, ||IVlll; < H, one has

supl||F (t,u) = F (&, v)|lly < ;
[t|<T $=S

Il = vl (53)

(3) There exists M > 0 such that for any 0 < s < 1,

M
sup|||F (£, 0)|[l; < —. (54)
tl<T lI-s
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Then, there exists a T, € (0,T) and a unique function u(t),
which for every s € (0, 1) is holomorphic in |t| < (1 —s)T, with
values in X and is a solution to the Cauchy problem (51).
Next, we restate the Cauchy problem (1) in a more
convenient form, and we can rewrite the Cauchy problem (1)
as follows:
Uy — Uy +4uvu, —3u,u,, v —uu,, v =0,
Vi = Vo H4vuv, = 3v, v u—vv  u=0, (55)
u(0,x) = uy (x), v(0,t) = vy (x).

Applying the operator (1 — 32)™" to both sides of the first
equation and second equation in (55), we obtain

-1
U, + uvi, + (1 - Bi)
2
x ((uxv UV, Uy — UV — UV, U
2
—2v(u, ), — uv iy, + 3uxvu) =0,
-1
Ve +vuv, + (1 - aﬁ) (56)
2
X ((vxu + VUL V= Vil — VLY,
2
“2u(v,), = ViV, + 3vxuv) =0,
u(0,x) = uy (x), v(0,t) = vy (x).
Differentiating with respect to x on both sides of the previous
equation and letting u; = u, u, = u,, u; = v,and u, = v,,

then the problem (56) can be written as a system for u;, u,,
u,, u, as follows:

-1
2
O,y = —U UsU, — (1 - ax)
2
x (uzax (uptty + 1y uy) — tyts — Uy Uy,
2
—2u30, U5 — U U0, U, + 3u2u3u1)
= Fy (uy, t, u3, 1) 5
o -1
Oty = — (Uyutsuy + 1,0, (314,)) — ax(1 - ax)
X ((u2u3 Uy Uy) Uy — Ualy — Uy Ul
2
—2u30, U5 — U U0 U, + 3u2u3u1)
= F, (uy, ty, 3, 1y) »
o -1
OpUs = —Uzl Uy — (1 - ax)
2
X (“4ax (ugtay + u3uy) — Uty — ustyuly
2
—2u,0, U — UsU,0, Uy + 3u4u1u3)

= Fy (), 1, 13, 1) »

Ouy = = (uguyuiy + us0, (uyuy)) = (1 - ai)—l
x (”4ax (gt + u311) = “i”l Uzl
—2ulaxuf1 — Uzl 0, Uy + 3u4u1u3)
= F, (uy, ty, s, 1) »

u; (0, x) = ugy (x),

u, (0,x) = u(') (x),

us (0,x) = v (x),

u, (0,x) = v(', (x).

(57)
Define

U= (Ml, Uy, Us, M4) >

F(U) = F (uy, uy, u3, uy)
(58)
= (F1 (”1>”2>”3’”4) B, (”p”z’“s»%) >

Fy (uy, gy vz, 14y) , Fy (g5 115, 13, 14)) -
Then, we have

U Uy,

U(0) = (uo,u('), Vo v('))

Proof of Theorem 2. Theorem 2 is a straightforward conse-
quence of the abstract Cauchy-Kowalevski Theorem 15.
We only need to verify conditions (1)-(2) in the state-
ment of the abstract Cauchy-Kowalevski Theorem 15 for
Fi(u;,uy,us,uy) (i = 1,2,3,4) in the system (57) since
Fi(uy, uy, us,u,), (i = 1,2,3,4) do not depend on ¢ explicitly.
We observe that, for 0 < s’ < s < 1, by the estimates in
Lemmas 13 and 14, condition (1) holds

Next, we verify the second condition. Forany u; and v; €
B(0,H) Cc E(j = 1,2,3,4), we have

|||F (”1’”2>”3’“4) _F(Vl’vz"%’%)ms’

4
= Z”lF; (”1’”2’”3>“4) - F, (V1’V2’V3’V4)”|s’ (60)
i=1

=L+L+1;+1,
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We will estimate I, I,, I5, and I,, respectively, where
I < |||u1u3u2 - v1v3v2|||s,
-1
+ |||(1 —02) (w0, (upus +uyuy)

—v,0, (Va7 + V1V4))|”s’

< ||y uzuy = vivsvo||o
+ |||t20, (upuz + ty1ay) = v,0, (vovs + vivy)|||o
+ |||y uguy = v, |||y
¢ (s - 20,0,
+ || [uy g0ty — vivi0, 1, |||
+ |||3uyu51y = 3v,v3v ||
< C (e Motz Meas = w3l
* [l M1 ez = 2l
+ valll sl = valll,
* [l Mzl My = val [l
+ [l vl 1 ez = v2ll

Hlvallllal e = v]ll)

oS sl - vl
eIl = vl
Mttt s = 1
el + vl s = 2l
llellElles - L)

< a5 18) = G100

(61)

In a similar way to what we just did, we can show that the
following estimates hold:

L < s 4 1oty 2000 13, 114) = (a1 10, 13,11,

I <

s_ o (1> v, 103, 1) - (”1’”2>”3’“4)|”s’

Advances in Mathematical Physics

I, <

s_s (o> 143, 13, 11) = (“1’”2’“3>u4)|”s’

(62)

where the constant C depends only on H. This implies that
condition (2) also holds. Conditions (1) through (3) are now
easily verified once our system (57) is transformed into a
new system with zero initial data as in (59). The proof of
Theorem 2 is complete. O
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