Белов А. Я.
Ассоциативных PI-алгебр, совпадающих со своим коммутантом,
не существует
Показано, что ассоциативная PI-алгебра (не обязательно конечно
порожденная) не совпадает со своим коммутантом. Тем самым решена проблема
И. В. Львова, поставленная им в Днестровской тетради.
|
Belov A. Ya.
No associative PI-algebra coincides with its commutant
We prove that each (possibly not finitely generated) associative PI-algebra
does not coincide with its commutant. We thus solve I. V. L'vov's problem
in the Dniester Notebook. The result follows from the fact (also established
in this article) that, in every T-prime variety, some weak identity
holds and there exists a central polynomial (the existence of a central
polynomial was earlier proved by A. R. Kemer). Moreover, we prove stability
of T-prime varieties (in the case of characteristic zero, this was done
by S. V. Okhitin who used A. R. Kemer's classification of T-prime varieties).
|