Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 15 (2020), 257 -- 279

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ON HERMITE INTERPOLATION AND DIVIDED DIFFERENCES

François Dubeau

Abstract. This paper is a survey of topics related to Hermite interpolation. In the first part we present the standard analysis of the Hermite interpolation problem. Existence, uniqueness and error formula are included. Then some computational aspects are studied including Leibnitz' formula and devided differences for monomials. Moreover continuity and differentiation properties of divided differences are analyzed. Finally we represent Hermite polynomial with respect to different basis and give links between them.

2020 Mathematics Subject Classification: 41A05; 65D05; 26C99
Keywords: Hermite interpolation; Hermite interpolating polynomial; divided differences; Leibnitz' formula; monomials; representation of Hermite polynomial

Full text

References

  1. D.F.~Bailey, G.J.~Fix, A generalization of the mean value theorem, Appl. Math. Lett., 1(4)(1988), 327-330. MR0975800(90c:26051). Zbl 0728.39004.

  2. S.D.~Conte, C.~de~Boor, Elementary Numerical Analysis, an Algorithmic Approach, McGraw-Hill, New York, 1980. MR3829062. Zbl 0496.65001.

  3. M.~Crouzeix, A.L.~Mignot, Analyse numérique des équations différentielles, Masson, Paris, 1984. MR0762089(86m:65002). Zbl 0635.65079.

  4. P.J.~Davis, Interpolation & Approximation, Dover, New York, 1963. MR0157156(28 # 393). Zbl 0111.06003.

  5. C.~de~Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978. MR0507062(80a:65027). Zbl 0406.41003.

  6. C.~de~Boor, Divided Differences, Surveys in Approximation Theory, 1 (2005), 46-69. MR2221566(2006k:41001). Zbl 1071.65027.

  7. W.~Gander, Change of basis in polynomial interpolation, Numerical Linear Algebra with Applications, 12 (2005), 769-778. MR2172676(2006g:41005). Zbl 1164.41302.

  8. E.T.Y.~Lee, A remark on divided differences, The American Mathematical Monthly, 96(7) (1989), 618-622. MR1008794(90i:39008). Zbl 0703.41001.

  9. C.~Micchelli, A constructive approach to Kergin interpolation, Rocky Mountain J. Math., 10 (1980), 485-497. MR0590212(84i:41002). Zbl 0456.41003.

  10. J.~Schwaiger, On a characterization of polynomials by divided differences, Aequationes Mathematicae, 48(2-3) (1994), 317-323. MR1295099(95i:39019). Zbl 0810.39007.

  11. A.~Spitzbart, A generalization of Hermite's interpolation formula, The American Mathematical Monthly, 67(1) (1960), 42-46. MR0137945(25 # 1393). Zbl 0097.04702



François Dubeau
Département de mathématiques,
Faculté des sciences, Université de Sherbrooke,
2500, boul. de l'Université,
Sherbrooke (Qc), Canada, J1K 2R1.
e-mail: francois.dubeau@usherbrooke.ca
https://www.usherbrooke.ca/mathematiques/personnel/corps-professoral/professeurs/francois-dubeau/

http://www.utgjiu.ro/math/sma