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ON HERMITE INTERPOLATION AND DIVIDED
DIFFERENCES

Francois Dubeau

Abstract. This paper is a survey of topics related to Hermite interpolation. In the first
part we present the standard analysis of the Hermite interpolation problem. Existence, uniqueness
and error formula are included. Then some computational aspects are studied including Leibnitz’
formula and devided differences for monomials. Moreover continuity and differentiation properties of
divided differences are analyzed. Finally we represent Hermite polynomial with respect to different

basis and give links between them.

1 Introduction

This paper is a survey of topics related to Hermite interpolation. We present an
accessible treatment of the Hermite interpolation problem and some related topics.
We have selected simple proofs for the results presented in the text.

In Section 2 we present the standard analysis of the Hermite interpolation
problem. Existence and uniqueness of Hermite polynomial, its representation with
respect to Newton basis, the definition of the divided differences, and error terms are
presented. In Section 3 some computational aspects are studied. Among them are
the recursive calculation of divided differences, Leibnitz’ formula, and computation
of divided differences for monomials. In Section 4, continuity and differentiation
properties of divided differences are analyzed. In Section 5 we represent Hermite
polynomial with respect to different basis and give links between them.
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258 Frangois Dubeau

2 Hermite interpolation

2.1 Hermite interpolation problem

let us consider a sequence of points g, x1, ..., Ty, distinct or not, such that any
point z in the sequence appears «(z) + 1 times. So we have

> (a(z)+1)=n+1.

distinct z€{z0,z1,...,Tn}

We say that two functions f(z) and g(x) agree at the points xq, 1, ..., &y, or g(z)
agrees with f(z), in case

for any point z which occurs a(z) + 1 times in the sequence xg, z1, ..., Zy.

In fact f(z) and g(x) agree at the points g, x1, ..., x, if and only if the difference
f(z) — g(x) has the zeros zg, x1, ..., z, counting multiplicities. The values f(z)
could be only data not related to any function. In this case we say that the function
g(z) agree with the data.

Problem 1. [/, 11] The Hermite interpolation problem is to find the least
degree polynomial p(x) which agree with f(x) at the points xo, x1, ..., Tn. If
this polynomial exists it will be called the Hermite interpolating polynomsial, or
shortly Hermite polynomsial.

2.2 Hermite polynomial and divided differences

For the Hermite interpolation problem there are n + 1 conditions, so it is normal
to look for a polynomial p,(z) € P,, where P, is the set of polynomials of degree
at most n. The following result about existence and uniqueness of p,(z) has some
different proofs, see for example [2—4, 11].

Theorem 2. There ezists a unique polynomial py(x) € Py, which agrees with f(x)
at the points xg, x1, ..., Tp.

Proof. Let us consider the representation of p,(x) with respect to the monomial
basis 1, x, ..., " as

n
pn(x) = Zak:vk.
k=0

The n+1 conditions lead to a linear system of n+1 equations with n+1 unknows, the
ar’s. It is enough to show that the unique solution of the homogeneous linear system
is the trivial solution a; = 0 for k = 0...,n. The conditions on the homogeneous
system imply that p,(z) has at least n + 1 zeros counting the multiplicity. This is
possible for p,(z) € P, only for p,(x) =0 for all x, so ap =0 for k =0,...,n. O
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Since the coefficient a,, of 2™ depends only on f(z) and the sequence of points
xg, T1, ..., Tp, we use the notation

ap = f[x()axlv"'vxn]7
and consider the following definition.

Definition 3. [6,8] The n-th order divided difference, f|xo,...,xy], is the
coefficient of ™ of the Hermite polynomial p,(z) which agree with f(x) at the points
Lo, L1y -+ Ty

Ifo:{0,1,...,n} — {0,1,...,n} is a permutation, from the uniqueness of p,(z),
and since the conditions on xg, x1, ..., &, and on T, (), Ty(1)s - - -5 To(n), are the
same, we have

flzo,z1, . @] = £ [To(0), To()s - - -+ To(n)] »

which means that the coefficient of ™ does not depends on the order of the xz;’s.
Because a, comes from the solution of a linear system, we have directly the
following linearity property.

Theorem 4. Linearity: let f(xz) and g(x) be two functions and \ a constant, then
(f+)‘g) [x()uxlu"' 73377,] = f[x()axlw '-’xn] + >‘g [J"Oul‘lv'” 7$n] .

2.3 Newton form of the Hermite polynomial

There are several possible representations of p,(x), each representation depends on
the choice of the basis for P,. One basis if well suited for a recursive computation
of pp(z), it is the Newton basis.
The Newton representation of py, () is based on the set of polynomials {my(z)}}_,
given by
0 (1‘) = 1,

and

k—1
7Tk((IZ)ZH(JZ—LL'j) for k=1,...,n,
=0

such that the degree of mi(z) is k. These n + 1 polynomials of increasing degree
from 0 up to n form a basis of P,. So we can write

n
pa(@) =Y ().
k=0
Expanding 7, (x), we get

pn(x) = ’Ynxn + Un—l(x)
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260 Frangois Dubeau

where u,_1(z) is a polynomial of degree at most n — 1. It follows that
Y = Qp.

The Hermite polynomial p,(z) can be determined recursively. Indeed if p,,—1(z)
is already determined with the conditions on xg, x1, ..., ,—1, then we set

pn(x) = pp—1(x) + f[xo, 21, . . ., Tn) Tn ().

This p,(z) satisfies all the conditions on zg, x1, ..., ,—1 because the last term will
be zero for these conditions. The new condition at x,, is used to find f [zg, x1, ..., Zy].
If z =z, occurs o+ 1 times in the sequence zg, x1, ..., Tn, we have to consider the

supplementary condition
P = FO2)
for z = x,,. Since

P (@n) = P (n) + f [0, 21, - - - 0] 7 ()

with 7" (zn) # 0, then

f[x()axl)"'?xn] =
So, using a recursive argument, we can write
n
pn(z) = Z flxo,x1,. ..,z m(x).
k=0

Let us remark that for the Taylor expansion, which is the case xo =z1 = ... =
xn = & with a(§) = n, we have

n (k)
k=0 '
SO
F®©)
gt 1=
(k+1)—times
for k=0,...,n.
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2.4 The error of the Hermite polynomial

In this section we recall the standard result about the error of interpolation which
appears for example in [2-4].

Theorem 5. Let us suppose f(z) € C"TY(R) and zq, 1, ..., T, be given, distinct
or not. For any x € R there exists

& € [min{x, zo, 21, ..., 2y}, max{z, g, T1,...,2n}]
such that 1
f(x) —pn(z) = mf(n+l)(§x)77n+1($)-
Proof. The result clearly holds for x = x;. Let us fix © # z; for ¢ = 0,...,n. For
the Hermite polynomial p,,1(t), which agrees with f(x) on x, xo, ..., x,, we have
f(x) = pn(2)

pn—i—l(t) = pn(t) + 7Tn+1(t).
Tng1(z)

Hence F(t) = f(t)—pn+1(t) has n+2 zeros at z, o, ..., x, counting the multiplicity.
It follows that there exists &, such that F("+D(¢,) = 0. But

FUrtD(p) = D) - i gy
7Tn+l(x) .

The result follows when we set t = &, in this last expression and ¢ = x in p,,41(t). O

FOD@) — (0 + 1)

Let x be different from any x;’s. The Hermite polynomial of f(x) on z, zo, ...,
Xy 18
Prt1(t) = pu(t) + f [z, 20, . ..y 2p] Tnia ().
Hence for t = x we get

f(l’) = pn(m) + f [l’,l’o, ) xn] 7Tn+1(1")'

From the preceding result we also have

_ A ()
f(x) = pn(x) + W”nﬂ(l’)
for &, € [min{z, zo,...,2,},max {x,xo,...,z,}]. So we have
A3
f[x7x07"‘7xn] — (n+ 1)'
As a consequence, if the x;’s are not all equal we get
(n)
[0y n] = i)
n!
for £ € [min{xzo,...,x,},max {xg,...,2,}]. So we have proved the following result.
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Theorem 6. Assume that f(z) € C"(R), and let xg, ..., x, be points distinct or
not. Then there exists

¢ € [min{zo,...,z,},max{zg,..., 2y}
such that -
flzo, .. xn) = ! |(£)
n!

3 On the computation of Divided differences

3.1 Recursive computation of divided differences

A recursive way to compute the divided differences is a simple consequence of the
following result.

Theorem 7. [1,8] We always have
(@ —xpi1)f) [xosx1y- .oy Tnt1] = flxo, 21, ..., 20,
or equivalently
((9)f) [0, 21, - Tnt1] = f 2o, 21, .o, 0] + Tpgr f [0, 21, -+ -, T ]
In this theorem and below, an expression like (¢ — xy)f) applied to  means (z —
) f(z).
Proof. Suppose that f(z) and g(z) agree on xg, 1, ..., Tn, then
flzo,z1,. .., zn]) = glxo, 1, .., T0] .

Let x,+1 be arbitrary. Then (z —x,41)f(z) and (x — 2,41)g(x) agree also on xq, x1,
..., Tn, Tnt1 because, using Leibnitz’ rule to compute the [-th derivative, we get

dl
i m)f(2) = (= 2an)fOE) +170()
= (2= 201)g"(2) + 19"V ()
dl
= @(Z — Tn+1)9(2)
for any z in zg, 1, ..., Tn, Tny1 and [ =0,...,a(z). It follows that
((. - xn—f—l)f) [«7707 Ty, >$n+1] = ((. - xn—i—l)g) [l‘(), Ti,--- 7xn+1] .
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Now, replace g(z) by the Hermite polynomial p,(z) of f(x) on zg, x1, ..., . Then

(x—2p+1) f(x) and (x —xp41)pn(x) agree on xg, T1, . .., Tn, Tnt+1, SO (T—Tpt1)pn(T)

is the Hermite polynomial of (x — z,,41) f(x) on zg, z1, ..., Tpn, Tn+1. Then, we have
((. - mn—&—l)pn) [x07x17 cee 7:1:71-"-1] = f [1170,(171, ey xn] )

because the coefficient of 2"+ of (2 — z,,41)pn(2) is the coefficient of 2™ of p,(x).
The result follows. O

Now considering the following two relations
(e —xn)f) [xo, 21, ... 2] = flzo,z1,...,2n-1],
(e —x0)f) [xoy X1y yxn] = floi, ... x4],
by substraction and linearity we get
(xn —x0)f [x0s X1y s ] = flz1, .y xn] — flzo, 21, Tn—1] -

In summary, we have

(n) .
fn'(x) if Tog=T] ="'+ =Ty =1,
flzo, .. xn) =
f[fvlamvxn];rj:[itaoséxl7~~~»xn—1} lf Zo # T,
which is a way to recursively generates f [xg,...,z,] forn =0,1,2,...

3.2 An identity

An interesting identity, related to multivariate B-spline, was obtained in [9] as a
consequence of Theorem 7. A simple proof, which we present here, was given in [8].

Theorem 8. let > ) Ay =1, and > ;_q \exi, = x, then

n
Z/\kf[xo,...,xk,l,m,xkﬂ,...,xn] = flzo,...,zn]-
k=0

Proof. We have
f[x(],---,$k_1,33,1'k+1,--.,$n] = f[$7x07"'7$k—1axk+17'-'>$n]
= ((e—xp)f) [z, z0,--- 2] .

So, with the assumption on the \;’s we obtain

Z)\kf[xm'"7xk717xaxk+17-'-7xn] = <Z/\k:(._xk)f) [x7$07'--a$n]
k=0 k=0
= ((.—iﬁ)f) [x7x07'-'axn]

= flzo,...,xn)

O]
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264 Frangois Dubeau

3.3 Leibnitz’ formula

Leibnitz’ formula for divided differences was obtained in [5]. A simpler way to obtain
this rule, suggested in [8], is presented below.

Theorem 9. Leibnitz’ formula. For any two functions f(x) and g(x), and a
sequence of points xg, X1, - .., Tn distinct or not, we have

(F9) [20s 21, s = S F a0, sak] g [0 ]
k=0

Proof. Using 7 (z) = H?;S (x — x;), and applying Theorem 7, we get

k—1
(7 f) [xo, @1, ..y Tp] = H(o—mj)f [0, %1,y Zn] = fTkyo ooy Tn) .
§=0
Now, let us consider the Hermite polynomial p,(z) = > p_q f 2o, .., 2k Tk(),
which agrees with f(z) on zg, z1, ..., x,. For any function g(z), f(z)g(z) and
pn(x)g(x) also agree on zg, x1, ..., x,. We have
(f9) [xo, 215y 2n] = (Png) [0, 21, .., Ty

= (Zf[xo,...,$k]7rkg> [T0, 21, ..+, 7]
k=0

= Zf[xo,---,ﬂfk](Wkg)[$07x17---vxn]
k=0

= Zf[I(),...,fEk]g[ZEk,-'wxn]’
k=0

hence we have the result. O
Not only we get the Leibnitz’ formula but we also have the Hermite polynomial

of (fg)(z) on zg, x1, ..., Tn.

Theorem 10. For any two functions f(x) and g(x) and a sequence of points xg,
x1, ..., Ty distinct or not, let g,—r(x) be the Hermite polynomial of g(x) on xy,
.., Tn. Then

P,(x) = Z flzo, - zk] ()@ (x)
k=0

is the Hermite polynomial of (fg)(x) on xo, ..., Ty.
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Proof. Indeed, suppose z appears a(z)+ 1 times in g, ..., x,. Take any [ such that
0 <1< a(z). Applying the Leibnitz’ rule for the derivatives, we get

P (2) > Flao, - @k (Trgn-n) " (2)
k=0
n l I l
= Zf [0, ..., Zk] Z < : ) W(J)(z)q( ﬂ)(z)
k=0 im0 N\
l I n l
= 3 (5) kom0
o SN s
For each j, let x; be the (j + 1)’th occurence of z in zg, ..., x,. Obviously i > j.

Fork>i+1

me(z) = (z — 2) (11 (2)

where uj_41)(z) is a polynomial of degree k — (j + 1) > 0, hence W,gj)(z) = 0.
Moreover, for each k < i, z occurs at least a(z) —j + 1 on xg, ..., x,, and since

(u

l—j <a(z)—j, we have qn:g)(z) = g9 (2). So we have successively

i

S flao ol m (al @) = > fleos e m (el L (=)
k=0

k=0
= "D flro,.... a7 (2)
k=0
= 9N flao.. a7 (2)
k=0
= gD ()P (2)
= D) f9(2)

It follows that

for | =0,...,a(2). O
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3.4 Divided differences for monomials

In this section we present expressions for the divided differences of z! not only for
[ > 0 as it is done in [10] for distinct points, but also for I < 0. These expressions
are also based on Theorem 7.

Theorem 11. Forn >0 and !l > 0 we have
n .
(@ 1F ) o, o) = > (91 [w0, - i)
i=0
Proof. From the following expression

2L f (1) = (2 — @)™ f (@) + ™t f (2),

and using Theorem 7, we obtain the following formula

@q“”#ﬁ%w”@d::(@fﬁmquﬁmwnwd+%(@wﬂﬂp@“w
= (@) o,y + 2 ((0)FF ) [0, 0]
= Zn:xl< ”lf) [0, ..., 2] .
=0
0

As an application of both the definition of divided differences and the preceding
result, we get the following expressions for the powers z! for I > 0. Since we have
flzo] = f(xo), we consider n > 0.

Theorem 12. Forn >1 and ! > 0 we have
(i) (&) [z0,..., 2] =0 forl=0,....,n—1;

(ii) (®)" [zo,...,xn] =1;

(iii) ()" FH 2o, ... zn] = > [z for 1=0.1,...
(lp>0,...,1,>0) =0
lo+ -+l =141

Proof. (i) and (ii) follow directly from the definition of the divided differences, while
(iii) is a direct consequence of the preceding result with f(z) = 1. O
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For the negative power of z, the x;’s must not vanish, so we assume x; # 0 for
1=0,...,n.

Theorem 13. For f(x) = 1/x we have

C) [xo,...,xn]zl%?o);.

Proof. Using Leibnitz’ formula and the preceding result, we have

2o, on] = <(i>o>[w0,...,wn]

@or- - 1] (8) [Tt 2m] + <.> @or- - 2] (#) [2]
%0s- - 1] + Tn <i> [%0s- - - T]

so for n > 1 we have

(i) [0, @n] = —;n (i) (%0, -+ n1]

This formula also holds for n = 0. O

Let us observe that from Theorem 11 we have

(o) e ] s o s

Divided differences for the negative powers of x are consequences of next two results.

Theorem 14. Forl > 0 and any n > 0 we have

<.l1+1) (@0, T0] = (i) [@os .- ] (8 {;{)M .

Proof. The proof is by induction on .
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Step 1. For [ = 0 and any n > 0 we have

) ozl = (5 ) os ] (O |
<) (:) o]

<.>n[1... 1}:1.

9y Y
i) Tn

because

Step 2. Assume we have the result for an / — 1 > 0 and any n > 0, so

(i) (@0, 2] = (i) (@0s- . 2] (8)7T [;;J .

For [, using Leibnitz’ formula and the induction assumption, we have

et ) o] = i 2 o] (3) o
=0

= Z <1) (w0, i] (o) 71 [9}01] (1> [wis. .

=0
Y
- s 2 [
B 1_([];:10);(:71“ [1 1]

xO’. ’xn
_ (1 nt | 1 1
= <.>[x0,...,a:n](o) [xo,...,xn].

O]

Finally, from Theorems 12, 13, and 14, we obtain the following expression for

the divided differences of f(z) = 1/z!*1.

Theorem 15. Forl > 0 and any n > 0 we have

() ool = Y o
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4 On the regularity of divided differences

4.1 Continuity

The next result concerns the continuity of the divided differences with respect to the
points xg, ..., Z,. The proof we present is an adaptation of the proof given in [2].

Theorem 16. Assume that f(z) € C"(R) and let xq, ..., x, be points, distinct or
not. If for each k, xop, ..., Tpr are n+ 1 points and limg_oo i = x;, 1 =0,..., 1,
then

lim flxog, .. Tuk] = flxo,...,2n].
k—o0

Proof. We proceed by induction on n.
Step 1. For n = 0 the result holds because f [z] = f(x).
Step 2. Suppose the result holds for n — 1. Now for n we proceed as follows.

Step 2a. We first show the result for z;’s not all equal. We suppose g # x,, and we
assume that zog # . for large k. Then

lim flzog,...,Tnk] = lim flew, - o] = [ka’ — 7$(n_1)k]
k—oo k—ro0 Tnk — Lok
o limgeo f [T1ky - s Tpk] — limg o0 f [:L’Ok, e ,:U(n_l)k]
N limg o0 (Tnk — Tok)
_ flei, o oyxn] — flzo, - vy Tpn—1]
Tp — IQ
= flzo,...,xn)
where the limits exist by induction hypothesis.
Step 2b. We show now the result for xt = zog = ... = z,. We have
n
klgrolo flook, -zl = klggo f(;(‘&c)
I ARIC))
n!
= flzxo,...,xn)
because & € [min{xog, ..., Tnk}, max {xo, ..., Ty }], and
klgglo [min {zog, ..., Tnk}, max {Tok, ..., Tur }] = {2} .
So the result holds for n. O
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4.2 Differentiation

Divided differences are also differentiable with repect to the points x;’s.

Theorem 17. Let g,(z) = f[x0,...,Zn, ] continuous for f(z) € C"*Y(R). For
1> 0 and f(z) € C""HL(R), we have

flzoy - yxn, z,...,x | = gn ()
———— I!
(I+1)—times
Proof. Since
gn(x + h) — gn(z) _ flxoy. . xn,x+h] = flxo,..., o0, ]
h h

= f[fl)‘(),...,.’l‘n,li,fE-i-h],

we have

gn(x + h) — gn(z)

Gn(z) = lim N
= lim f[xo,...,Zn, 2,z + A
h—0
= flxoy...,xpn,x,2].

Now let us suppose the result holds for [ — 1,

gV (@) = (1= D f[zo, . Tn, 2, ., 3],
—ti

then

gr(zl_l)(x + h) - gg_l)(:n) = (l - 1)' f[$0a o T, T+ ha ST+ h] - f[x()a o Lny Ty -7:E]
N———— ——

l—times l—times
= ((—-1)!x
-1
f[xovvxﬂn 77'%. x+h77x+h_fx077 s ZTy., T ,[If—i-h,.,ﬂﬁ'—i-h
=0
= i— tzmes —times (i+1)—times (I—(i+1))—times

— (-1 o Tn, @ox T+ h 4R
(-1 Zf[mo Tns Tyt T4 Rzt
(i+1)—times  (I—i)—times
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Hence

(I-1) . (1-1)
h—0

-1
— =15 i sy, Lye EA P £+ R
( ) ;hli%f[xo’ T,y X T ,x+ z + h)

(i+1)—times (I—i)—times
-1
= (-1 TQyevesTyy Tyevoy T
(-1 ;f[ 0 ]

(I4+1)—times
= Uflzo,. .., Tn, x,...,2 ]
——

(I41)—times

Now a direct consequence of this last result is the next proposition.

Theorem 18. Let us suppose that there are r+1 different values z;; for j =0,...,r
which each appears a(xij) + 1 times in the sequence xg, ..., Ty, in such a way that

T s

Z (i) +1) = ZOZ(C%) +(r+1)=n+1

=0 =0
For f(z) € C*"(R), we have

9(@ig) o (@ir)

amo‘(xio) R axa(xir) f[l‘io, ey {L‘ir] = f[ 551'07 e ,IL’Z‘O gy .Tir, e 7$ir ]
io tr (a(ziy)+1)—times (a(zs,.)+1)—times

= flxo,...,zn]

5 Bases and representations of the Hermite polynomial

5.1 Reformulation of the problem

The Hermite interpolation problem we have solved can be restated as presented in
the last section. We consider r + 1 distinct points xg, 1, ..., x,, and associated
r 4 1 integers ap, a1, ..., a,. We look for a polynomial p,(x) € P, such that

pW(xy) = fO(x;) for 1=0,..., 040 =0,...,r.

We have >0 (i +1)=>"" qa;+r+1=n+1. We are going to represent py ()
with respect to different bases as was done in [7] for Lagrange interpolation (a; = 0
for all i, so r = n, all distinct ;).
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5.2 Monomial basis

Using the monomial basis {1, x, 2%, .. ,w"}, we can write

n
pn(x) = Z a;x’.
=0

The coefficients a;’s are obtained by considering the linear system obtained by the
a; + 1 conditions at each x;. So we have

n

i
Pg)(ﬁi) = Z%'WIJ b= f(l)(xi) (1=0,...,04).
= '

Under matrix form, for each index i we have a («; + 1,n + 1)-matrix V; and a
(o + 1, 1)-matrix F;

M1 1! 20,2 . LZ'OZZ n! . .n T - -

ne A ol®i pl f(w;)
L L. Q- i . _n_ n— /
L i @i % -1y % f(z:)
;! a;—2 n! n—2 "
Vi = 2 IR n—2)1%i JF= | f(@)
n! n—o (a) .
i ;! R ey LR RARICHN

Vo Fy
Vi Fy
v=|Ve |, F=| F2

LV L

The V matrix is the confluent Vandermonde matrix. The a;’s are the solution of
the system

Va=F

with a = [ag,a1,...,a,]". We know that this matrix is invertible because the

homogeneous system Va = 0 has only the zero solution a = 0. So
a=V'F
If we set M(z) = [1,z,--- ,2"]T we have
pu(z) = MT(2)a = MT(z)VF.
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5.3 Generalized Lagrange basis

To form this basis, we look for polynomials ¢;(z) € P, (I =0,...,0;;1=0,...,7),
such that
fEf) (z5) = dijou,
where
0 if r#s,
67“5 =

1 if r=s.

For each i, l;q, (x) must have a zero of multiplicity «; + 1 at x; for j # i and a zero
of multiplicity «; at z;. So we write

where

(= \ M
Uz(w) g(xz_eT]) :

J#1
Hence /l;q,(x) verifies all the desired conditions. We now construct recursively,
in a decreasing order for the index [, the polynomials ¢;(x) for | = a; — 1,05 —
2,...,1,0. Suppose l;;(z) is already defined for k = «;,; — 1,...,1 + 1, for an
le{a;—1,a; —2,...,1,0}. To determine ¢;;(x), we start with

l

Ua(z) = (:U_“xi)vi(x),

which verifies the conditions for each z; (j # ¢). For z; we have
M) =0 it k<l
and .
() = 1.

Moreover, for k > [, we have

k l k o !
~(k) d (v —xy) ' B k (k—o) d° (x — x;)
gil (‘T)L’C:xz - dl‘k il v2($)|ﬂv=xi - Uz:;) < o vi (ﬂf) dr® Al ’Jf:aci'

But
d° (z— xi)l

T

~ k _
= () o
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So we set
@i .
- -
lu(z) = ly(z) — Z < g )Ui(J )(%)fij(fﬁ)-
J=l+1
A similar construction of the ¢;(z) for ¢ = 0,...,r and each i for [ = 0,...,q; has

been presented in [11]. Finally, we have

=y Z FO (@)l ()

i=0 (=0
If we set
[ lio(z) ] [ Lo(z) ]|
(i () Li()
Li(x) = lin() , for i=0,...,r, and L(z)= Ly(z) )
| Lo () ] | Lr(z) |
we have

pn(x) = LT(x)F.

We also obtain
VTL(x) = M(x).

5.4 Newton basis

We construct a family of n + 1 polynomials of increasing degree m;(x) € P, (I =
0,...,a;;1=0,...,r) by considering successively the x;. They are linearly independant
and form a basis of P,,. We set

i—1
() x—leH (x —z; O‘JH,

j=0

such that mpp(z) = 1. We can write

T [e73
=> ) damalx)
i=0 1=0

We observe that

i—1 o l
P (i) = )\jk%('g(fﬂi) + Nkl (),
j=0 k=0 k=0

I\
o
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because for any fixed [ =0,...,q;

j=1 and k=1+1,...,q
](Q(xl) =0 for
j>41 and k=0,...,0q;
Since
i—1
l )
) () = 1 [ (s — z)% L #0,
§=0
we can solve for \; to get

1
f (i) — Z; 0 k 0 A]kﬂjk (i) — Z Azkﬂlk (i)
()
So we can find p,(z) by solving recursively one equation. Since 7., (z) is the unique
polynomial of degree n we get a, = Arq,.-
Let us observe that with the Newton basis and an ordering of the points (with
their multiplicities), we can compute the divided differences with an appropriate

table (as the usual table for the Lagrange case).
From a matrix point of view, let us set the (o; + 1, a; + 1)-matrices

il =

IL;; = 7. ()
1=0,...,q4
kE=0,...,04
fori=0,...,7and 7 =0,...,r. Let us observe that

(i) ifj > 4 then Hij =0,
(ii) if 7 = 4 then II;; is a lower triangular matrix because Trl.(,? (x;) =0 for k >,
(iii) if 7 < 4 then II;; is a full matrix.

Let ~ _ _ _
)\iO A0
/\il Al
A= | M2 for ¢=0,...,r, and A= Ay ,
L )\iozi | L AT i
and
Moo 1oy ITo,
B ITip IItp ITy,
o Il L
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So we have [IA = F and A =TI 'F. If

ﬂ'io(x) Ho(l‘)
mi () Iy ()
II(z) = Tio() for ¢=0,...,r, and II(z)= y(z) ||
ENCE [ 11 (0)

we have
pu(z) = T (x)A = TIT ()T F.
5.5 An orthogonal basis
Let us consider the inner product defined by
(p(e),q(e)) => > pW(xi)q¥ ()
i=0 =0

for two polynomials p(x) and g(x) in P,,. We can construct recursively an orthogonal
basis with this inner product. Let us start with go(x) = 1, and assume by induction
that the set {qj(x)}?zo form a sequence of orthogonal polynomials such that the
degree of g;j(x) is j. We get gx41(x) by

k
i1 (7) = 2qp(@) = Y Yer1,5¢5(x)
=0

where
IR CTRORIO)
T {gj(e),q5(e))
for 7 =0,...,k. Let us observe that we have
((®)p(e), q(®)) = (p(e), (¢)q(e))
only in the case a; = 0 for ¢ = 0,...,r, for which we have the usual three term

relation for the orthogonal g (x).

The norm associated to the inner product is

Ipll = v/ (p(e), p(e)).

Now we look for a polynomial
o) =) wiqr(x)
k=0

kst sk ok sk ok sk s ok sk sk ok ok sk sk ok sk sk sk s ok sk sk sk s sk sk sk ok sk sk sk s ok sk sk sk st sk sk sk ok sk sk sk sk ok sk sk sk s sk sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 15 (2020), 257 — 279
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma

Hermite interpolation 277

which minimize || f — p,||. Using the normal equations

(f(®) —pn(e),qr(e)) =0

for k =0,...,n. The solution is given by

pa(@) =D (f(e), ai(®)) g ().
k=0
We have for j =0,...,n
[ gj(a) ] [ Qo |
q;(fﬂz) Q1
1
Qij = j (i) for i=0,...,r, and Q;= Q2;
| 4™ (@) | [ @rj
Then, let us set
Qoo --- Qon
Qo - Qun
Q= [ Qo Qn ] = . .
QTO e an
With w = [ wg ... Wy ]T, we have to solve the linear system
Quw=F

But QTQ = Diag <||qj||2>, so from QTQw = QTF we get

w = Diag < > QTF.
lg; 1*

Then, for Q(z) = [ qo(z) ... qn(z) ]T, we have
i) =@ = @b (n P ) v
j

5.6 Links between bases

We have
po(x) = MT(2)VIF = LT(2)F =T (2)IT"'F = QT(x)Diag (H & ) QTF,
4qj
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so obtain

MT(@)V~! = LT(z) = T ()" = Q7(x)Diag <|| 1|2> Q.
a;
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