Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 355 -- 365

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ASPECTS REGARDING THE EXISTENCE OF FIXED POINTS OF THE ITERATES OF STANCU OPERATORS

Amelia Bucur

Abstract. In the papers Iterates of Stancu Operators, via Contraction Principle (2002), respectively Iterates of Bernstein Operators, via Contraction Principle (2004), author I. A. Rus studied the existence of fixed points for Stancu operators Pn,α,β and Bernstein operators Bn. The aim of this paper is to find conditions for which the Stancu operators Pn,α,β are contractions on the graph, in order to demonstrate that the contraction principle can be applied for the study of the existence of fixed points for iterates of Stancu operators. The method used for this paper is the spectral method, which was also used in the paper Over-iterates of Bernstein-Stancu operators (2007), authors Gonska, Piţul and Raşa. The study began with finding constant C∈[0,1[ that would satisfy the inequality ||Pn,α,β2 (f)-Pn,α,β (f)|| ≤ C ||Pn,α,β (f)-f||, for any f∈ C[0,1]. The conclusion is that there are conditions for which the Stancu operators are contractions on the graph, and the methods used for the study of the existence of fixed points of their iterates can also be extended to the study of the existence of fixed points of other linear operators.

2010 Mathematics Subject Classification: 39B12, 47B37, 40G05, 47H10, 54H25
Keywords: iterate operators; fixed point; Stancu operators

Full text

References

  1. O. Agratini and I. A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math., 44 (2003), 555--563. MR2025820. Zbl 1096.41015.

  2. O. Agratini and I. A. Rus, Iterates of some bivariate approximation process via weakly Picard operators. Nonlinear Analysis Forum, 8 (2003), 159-168. MR2040850. Zbl 1206.41021.

  3. S. M. A. Aleomraninejad, Sh. Rezapour and N. Shahzad, Some fixed point results on a metric space with a graph, Topology and its Applications, 159 (2012), 659-663. MR2868864. Zbl 1237.54042.

  4. D. Bărbosu, Kantorovich-Stancu Type Operators, JIPAM. Journal of Inequalities in Pure and Applied Mathematics, 5 (2004), 1-6. MR2084863. Zbl 1054.41010.

  5. D. Bărbosu, A survey on the approximation properties of Schurer-Stancu operators, Carpathian .J. Math., 20 (2004), 1-5. MR2138521. Zbl 1089.41017.

  6. S. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Charkow Ges., 13 (2) (1912), 1-2. JFM 43.0301.03.

  7. C.A. Charalambides, The q-Bernstein basis as a q-binomial distribution, Journal of Statistical Planning and Inference, 140 (2010), 2184-2190. MR2609477. Zbl 1191.60014.

  8. J. L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: Application à la théorie des moments. Thése de 3 cycle, Faculté des Sciences de l'Université de Paris, 1967.

  9. F. G. Fontes and F. J. Solís, Iterating the Cesàro operators, Proc. Amer. Math. Soc., 136 (2008), 2147-2153. MR2383520. Zbl 1146.47019.

  10. I. Gavrea and M. Ivan, On the iterates of positive linear operators preserving the affine functions. J. Math. Anal. Appl., 372 (2010), 366-368. MR2678868. Zbl 1196.41014.

  11. I. Gavrea and M. Ivan, The iterates of positive linear operators preserving the constants. Appl. Math. Lett. 2011, 24, 2068-2071. MR2826127. Zbl 1232.41030.

  12. I. Gavrea and M. Ivan, On the iterates of positive linear operators, J. Approximation Theory, 163 (2011), 1076-1079. MR2832743. Zbl 1236.41002.

  13. H. Gonska, D. Kacso and P. Piţul, The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1 (2006), 403-423. MR2220800. Zbl 1099.41011.

  14. H. Gonska, P. Piţul and I. Raşa, Over-iterates of Bernstein-Stancu operators, Calcolo, 44 (2007), 117-125. MR2330763. Zbl 1150.41013.

  15. H. Gonska and I. Raşa, The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar., 111 (2006), 119-130. MR2188976. Zbl 1121.41004.

  16. T. L. Hicks and B. E. Rhoades, A Banach type fixed point theorem, Math. Jap., 24 (1979), 327-330. MR0550217. Zbl 0432.47036.

  17. S. Karlin and Z. Ziegler, Iteration of positive approximation operators, J. Approximation Theory, 3 (1970), 310-339. MR0277982. Zbl 0199.44702.

  18. S. Kasahara, A Remark on the Contraction Principle, Proc. Japan Acad., 44 (1968), 21-26. MR0230182. Zbl 0169.46002.

  19. R. P. Kelisky and T. V. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21 (1967), 511-520. MR0212457. Zbl 0177.31302.

  20. G. Nowak, Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 350 (2009), 50-55. MR2476891. Zbl 1162.33009.

  21. S. Ostrovska, q-Bernstein polynomials and their iterates, Journal of Approximation Theory, 123 (2003), 232-255. MR1990098. Zbl 1093.41013.

  22. I. A. Rus, Iterates of Stancu Operators, via Contraction Principle, Studia Univ. Babeş-Bolyai Math., 47 (2002), 101-104. MR1993908. Zbl 1249.41020.

  23. I. A. Rus, Iterates of Bernstein Operators, via Contraction Principle, J. Math. and Appl., 292 (2004), 259-261. MR2050229. Zbl 1056.41004.

  24. I. A. Rus, Fixed point and interpolation point set of a positive linear operator on C(`D), Studia Univ. Babeş-Bolyai Math., 55 (2010), 243-248. MR2785009. Zbl 1240.41069.

  25. I. A. Rus, A. Petruşel and G. Petruşel, Fixed Point Theory, Presa Universitară Clujeană, Romania, 2008. MR2494238. Zbl 1171.54034.

  26. D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13 (1968), 1173-1194. MR0238001. Zbl 0167.05001.

  27. T. Savu, I. Neacşu, Ş. Grigorescu and E. M. Garabet, Bazele instrumentaţiei virtuale LabView (in romanian), Publishing House Atelier didactic, 2002, Bucharest.

  28. A. Szilárd, Iterates of the multidimensional Cesáro operator, Carpathian Journal of Mathematics, 28 (2012), 191-198. MR3027244. Zbl 1289.47064.

  29. A. Szilárd and I. A. Rus, Iterates of Cesàro Operators, via Fixed Point Principle, Fixed Point Theory, 11 (2010), 171-178. MR2743773. Zbl 1213.47033.

  30. ***, LabVIEW User Manual; April 2003 Edition; National Instruments Corp. Austin, Texas, U.S.A.

  31. http://www.ni.com/ro-ro/shop/labview.html. Accessed on 31 January 2019.




Amelia Bucur
Faculty of Sciences, Department of Mathematics and Informatics,
Lucian Blaga University of Sibiu,
Sibiu, Romania.
e-mail: amelia.bucur@ulbsibiu.ro

http://www.utgjiu.ro/math/sma