Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 327 -- 339

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SOME STABILITY RESULTS FOR COUPLED FIXED POINT ITERATIVE PROCESS IN A COMPLETE METRIC SPACE

M. O. Olatinwo and K. R. Tijani

Abstract. In the paper [M. O. Olatinwo, Stability of coupled fixed point iterations and the continuous dependence of coupled fixed points, Communications on Applied Nonlinear Analysis 19 (2012), 71-83], the author has extended the notion of stability of fixed point iterative procedures contained in the paper [A. M. Harder and T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica 33 (1988), 693-706], as well as the continuous dependence of fixed points to the coupled fixed point settings by employing the contractive conditions and the coupled fixed point iteration in the article [F. Sabetghadam, H. P. Masiha and A. H. Sanatpour, Some coupled fixed point theorems in cone metric spaces, Fixed Point Theory and Applications, Article ID 125426 (2009)]. In the present paper, we obtain some results on stability of coupled fixed point iterative procedures by using rational type contractive conditions.

2010 Mathematics Subject Classification: 47H06; 54H25.
Keywords: Coupled fixed point iterations; continuous dependence of coupled fixed points; complete metric spaces; rational type.

Full text

References

  1. M. Abbas and I. Beg, Coupled random fixed points of random multivalued operators on ordered Banach spaces, Communications on Applied Nonlinear Analysis 13 (4) (2006), 31-42. MR2286404. Zbl 1122.47048.

  2. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. MR3949898. JFM 48.0201.01.

  3. I. Beg, A. Latif, R. Ali and A. Azam, Coupled fixed points of mixed monotone operators on probabilistic Banach spaces, Arch. Math., Brno 37 (1) (2001), 1-8. MR1822758. Zbl 1068.47093.

  4. V. Berinde, On the stability of some fixed point procedures, Bull. Stiint. Univ. Baia Mare, Ser., Mathematica-Informatica, 8 (1) (2002), 7-14. MR2014277. Zbl 1031.47030.

  5. V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare, 2002. MR1995230. Zbl 1036.47037.

  6. V. Berinde, Iterative approximation of fixed points, Second Edition, Springer-Verlag Berlin Heidelberg, 2007. MR2323613. Zbl 1165.47047.

  7. T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods and Application 65 (7) (2006), 1379-1393. MR2245511. Zbl 1106.47047.

  8. S. S. Chang and Y. H. Ma, Coupled fixed points of mixed monotone condensing operators and existence theorem of the solution for a class of functional equations arising in dynamic programming, J. Math. Anal. Appl. 160 (1991), 468-479. MR1126131. Zbl 0753.47029.

  9. L. Ciric, M. O. Olatinwo, D. Gopal and G. Akinbo, Coupled fixed point theorems for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Advances in Fixed Point Theory 2 (1) (2012), 1-8.

  10. L. Ciric and V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stochastic Analysis and Applications 27 (6) (2009), 1246-1259. MR2573461. Zbl 1176.54030.

  11. A. M. Harder and T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica 33 (5) (1988), 693-706. MR0972379. Zbl 0655.47045.

  12. C. O. Imoru and M. O. Olatinwo, On the stability of Picard and Mann iteration processes, Carpathian J. Math. 19 (2) (2003), 155-160. MR2069844. Zbl 1086.47512.

  13. C. O. Imoru, M. O. Olatinwo and O. O. Owojori, On the Stability of Picard and Mann iteration procedures, J. Appl. Func. Diff. Eqns. 1 (1) (2006), 71-80. MR2293939.

  14. V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods & Applications 70 (12) (2009), 4341-4349. MR2514765. Zbl 1176.54032.

  15. M. O. Olatinwo, Coupled fixed point theorems in cone metric spaces, Ann. Univ. Ferrara 57 (1) (2011), 71-83. MR2821375. Zbl 1230.54042.

  16. M. O. Olatinwo, Coupled common fixed points of contractive mappings in metric spaces, Journal of Advanced Research in Pure Mathematics 4 (2) (2012), 11-20. MR2925664. Zbl 1369.54018.

  17. M. O. Olatinwo, Stability of coupled fixed point iterations and the continuous dependence of coupled fixed points, Communications on Applied Nonlinear Analysis 19 (2) (2012), 71-83. MR2953285. Zbl 1369.54018.

  18. M. O. Osilike, Stability results for fixed point iteration procedures, J. Nigerian Math. Soc. 14/15 (1995), 17-29. MR1775011. Zbl 0847.47043.

  19. M. O. Osilike and A. Udomene, Short proofs of stability results for fixed point iteration procedures for a class of contractive type mappings, Indian Journal of Pure and Applied Mathematics 30 (12) (1999), 1229-1234. MR1729212. Zbl 0955.47038.

  20. A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech. 47 (1967), 77-81. MR0216731. Zbl 0149.36601.

  21. B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures, Indian Journal of Pure and Applied Mathematics 21 (1) (1990), 1-9. MR1048010. Zbl 0692.54027.

  22. B. E. Rhoades, Fixed point theorems and stability results for fixed point iterative procedures. II, Indian Journal of Pure and Applied Mathematics 24 (11) (1993), 691-703. MR1251180. Zbl 0794.54048.

  23. F. Sabetghadam, H. P. Masiha and A. H. Sanatpour, Some coupled fixed point theorems in cone metric spaces, Fixed Point Theory and Applications, Volume 2009, Article ID 125426, 8 Pages (2009). MR2557268. Zbl 1179.54069.



M. O. Olatinwo
Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria.
e-mail: memudu.olatinwo@gmail.com, molaposi@yahoo.com, polatinwo@oauife.edu.ng

K. R. Tijani
Department of Mathematics, Osun State University, Osogbo, Nigeria.
e-mail: kamil_tijani2000@yahoo.com, kkrotimi72@gmail.com, kamiludeen.tijani@uniosun.edu.ng

http://www.utgjiu.ro/math/sma