Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 327 -- 339
This work is licensed under a Creative Commons Attribution 4.0 International License.SOME STABILITY RESULTS FOR COUPLED FIXED POINT ITERATIVE PROCESS IN A COMPLETE METRIC SPACE
M. O. Olatinwo and K. R. Tijani
Abstract. In the paper [M. O. Olatinwo, Stability of coupled fixed point iterations and the continuous dependence of coupled fixed points, Communications on Applied Nonlinear Analysis 19 (2012), 71-83], the author has extended the notion of stability of fixed point iterative procedures contained in the paper [A. M. Harder and T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica 33 (1988), 693-706], as well as the continuous dependence of fixed points to the coupled fixed point settings by employing the contractive conditions and the coupled fixed point iteration in the article [F. Sabetghadam, H. P. Masiha and A. H. Sanatpour, Some coupled fixed point theorems in cone metric spaces, Fixed Point Theory and Applications, Article ID 125426 (2009)]. In the present paper, we obtain some results on stability of coupled fixed point iterative procedures by using rational type contractive conditions.
2010 Mathematics Subject Classification: 47H06; 54H25.
Keywords: Coupled fixed point iterations; continuous dependence of coupled fixed points; complete metric spaces; rational type.
References
M. Abbas and I. Beg, Coupled random fixed points of random multivalued operators on ordered Banach spaces, Communications on Applied Nonlinear Analysis 13 (4) (2006), 31-42. MR2286404. Zbl 1122.47048.
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. MR3949898. JFM 48.0201.01.
I. Beg, A. Latif, R. Ali and A. Azam, Coupled fixed points of mixed monotone operators on probabilistic Banach spaces, Arch. Math., Brno 37 (1) (2001), 1-8. MR1822758. Zbl 1068.47093.
V. Berinde, On the stability of some fixed point procedures, Bull. Stiint. Univ. Baia Mare, Ser., Mathematica-Informatica, 8 (1) (2002), 7-14. MR2014277. Zbl 1031.47030.
V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare, 2002. MR1995230. Zbl 1036.47037.
V. Berinde, Iterative approximation of fixed points, Second Edition, Springer-Verlag Berlin Heidelberg, 2007. MR2323613. Zbl 1165.47047.
T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods and Application 65 (7) (2006), 1379-1393. MR2245511. Zbl 1106.47047.
S. S. Chang and Y. H. Ma, Coupled fixed points of mixed monotone condensing operators and existence theorem of the solution for a class of functional equations arising in dynamic programming, J. Math. Anal. Appl. 160 (1991), 468-479. MR1126131. Zbl 0753.47029.
L. Ciric, M. O. Olatinwo, D. Gopal and G. Akinbo, Coupled fixed point theorems for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Advances in Fixed Point Theory 2 (1) (2012), 1-8.
L. Ciric and V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stochastic Analysis and Applications 27 (6) (2009), 1246-1259. MR2573461. Zbl 1176.54030.
A. M. Harder and T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica 33 (5) (1988), 693-706. MR0972379. Zbl 0655.47045.
C. O. Imoru and M. O. Olatinwo, On the stability of Picard and Mann iteration processes, Carpathian J. Math. 19 (2) (2003), 155-160. MR2069844. Zbl 1086.47512.
C. O. Imoru, M. O. Olatinwo and O. O. Owojori, On the Stability of Picard and Mann iteration procedures, J. Appl. Func. Diff. Eqns. 1 (1) (2006), 71-80. MR2293939.
V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods & Applications 70 (12) (2009), 4341-4349. MR2514765. Zbl 1176.54032.
M. O. Olatinwo, Coupled fixed point theorems in cone metric spaces, Ann. Univ. Ferrara 57 (1) (2011), 71-83. MR2821375. Zbl 1230.54042.
M. O. Olatinwo, Coupled common fixed points of contractive mappings in metric spaces, Journal of Advanced Research in Pure Mathematics 4 (2) (2012), 11-20. MR2925664. Zbl 1369.54018.
M. O. Olatinwo, Stability of coupled fixed point iterations and the continuous dependence of coupled fixed points, Communications on Applied Nonlinear Analysis 19 (2) (2012), 71-83. MR2953285. Zbl 1369.54018.
M. O. Osilike, Stability results for fixed point iteration procedures, J. Nigerian Math. Soc. 14/15 (1995), 17-29. MR1775011. Zbl 0847.47043.
M. O. Osilike and A. Udomene, Short proofs of stability results for fixed point iteration procedures for a class of contractive type mappings, Indian Journal of Pure and Applied Mathematics 30 (12) (1999), 1229-1234. MR1729212. Zbl 0955.47038.
A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech. 47 (1967), 77-81. MR0216731. Zbl 0149.36601.
B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures, Indian Journal of Pure and Applied Mathematics 21 (1) (1990), 1-9. MR1048010. Zbl 0692.54027.
B. E. Rhoades, Fixed point theorems and stability results for fixed point iterative procedures. II, Indian Journal of Pure and Applied Mathematics 24 (11) (1993), 691-703. MR1251180. Zbl 0794.54048.
F. Sabetghadam, H. P. Masiha and A. H. Sanatpour, Some coupled fixed point theorems in cone metric spaces, Fixed Point Theory and Applications, Volume 2009, Article ID 125426, 8 Pages (2009). MR2557268. Zbl 1179.54069.
M. O. Olatinwo
Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria.
e-mail: memudu.olatinwo@gmail.com, molaposi@yahoo.com, polatinwo@oauife.edu.ng
K. R. Tijani
Department of Mathematics, Osun State University, Osogbo, Nigeria.
e-mail: kamil_tijani2000@yahoo.com, kkrotimi72@gmail.com, kamiludeen.tijani@uniosun.edu.ng