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SOME STABILITY RESULTS FOR COUPLED
FIXED POINT ITERATIVE PROCESS IN A
COMPLETE METRIC SPACE

M. O. Olatinwo and K. R. Tijani

Abstract. In the paper [M. O. Olatinwo, Stability of coupled fixed point iterations and the
continuous dependence of coupled fixed points, Communications on Applied Nonlinear Analysis 19
(2012), 71-83], the author has extended the notion of stability of fixed point iterative procedures
contained in the paper [A. M. Harder and T. L. Hicks, Stability results for fixed point iteration
procedures, Math. Japonica 33 (1988), 693-706], as well as the continuous dependence of fixed
points to the coupled fixed point settings by employing the contractive conditions and the coupled
fixed point iteration in the article [F. Sabetghadam, H. P. Masiha and A. H. Sanatpour, Some
coupled fixed point theorems in cone metric spaces, Fixed Point Theory and Applications, Article
ID 125426 (2009)]. In the present paper, we obtain some results on stability of coupled fixed point

iterative procedures by using rational type contractive conditions.

1 Introduction

Let (X,d) be a complete metric space and T: X — X. Ostrowski [20] gave a
pioneering result on the stability of iterative procedure in metric space for Picard
iteration.

Harder and Hicks [11] proved some stability theorems for the Picard, Mann and
Kirk’s iterative processes by employing some contractive-type conditions.

We now state the first formal definition of stability for general iterative scheme due
to Harder and Hicks [11]:

Definition 1 (Harder and Hicks [11]). Let (X, d) be a complete metric space and
T: X — X. Let F(T) = {p € X | Tp = p} denote the set of fized points of T.
Let {x,}°, C X be the sequence generated by an iterative procedure involving the
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operator T, that is,
Tn+1 :f(Taxn)v ’I’l:O, ]-7 25 ) (11)

where xog € X is the initial approximation and f is some function. Suppose {xy}72
converges to a fized point p of T. Let {yn}5°, C X and set €, = d(Yn+1, f(T,yn)),
(n =0, 1, 2,---). Then, the iterative procedure (1.1) is said to be T—stable, or,
stable with respect to T if and only if lim €, = 0 implies lim y, = p.

n—oo n—oo

The following contractive condition was employed by Harder and Hicks [11]: For
T: X — X, there exists a € [0,1) such that, V z, y € X, we have

d(Tz, Ty) < ad(z,y). (1.2)

In addition, the following contractive definition was considered by Harder and Hicks
[11]: For T: X — X, there exist some real numbers 0 < a <1, 0< 8 <3, 0<y<
%, such that, V z, y € X, then

d(Tx,Ty) < ad(zx,y)
d(Tz, Ty) < Bld(z,Tz) + d(y, Ty)] (1.3)
d(Tz, Ty) < vld(z,Ty) + d(y, Tz)].

The contractive conditions in (1.2) and (1.3) were both used by Harder and Hicks
[11] to establish stability results for various iterative processes.

Rhoades [21] extended the results of Harder and Hicks [11] by employing the
following contractive condition: For T: X — X, there exists ¢ € [0,1) such that,
vV, y € X, we have

d(Tz,Ty) < ¢ max{d(z,y),d(z,Ty),d(y, Tx)}. (1.4)

Also, Rhoades [22] obtained generalizations and extensions of the results of [21] by
using the following contractive condition: For T': X — X there exists ¢ € [0,1) such
that, Vz, y € X,

d(z,Tx) + d(y, Ty)

d(Ta, Ty) < ¢ max{d(z, y). :

yd(x, Ty),d(y, Tx)}. (1.5)

Furthermore, Osilike [18] generalized and extended some of the results of Rhoades
[21, 22] for a larger class of contractive-type operators. In [18], he employed the
following contractive condition: For T: X — X, there exist A € [0,1), L > 0, such
that,

d(Tz,Ty) < Ld(z,Tz) + Md(x,y), V z, y € X. (1.6)

Harder and Hicks [11], Rhoades [21, 22] and Osilike [18] used the method of the
summability theory of infinite matrices to prove various stability results for certain
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contractive definitions. However, Osilike and Udomene [19] introduced a shorter
method to prove stability results for various iterative processes using the condition
(1.6).

However, using the same method of proof as in [19] and the same contractive
conditions as in Harder and Hicks [11], Berinde [4] also established some stability
results for the same iterative processes for which the authors of [11] had proved
their results. Imoru and Olatinwo [12] extended some of the results of Harder and
Hicks [11], Rhoades [21, 22], Berinde [4], Osilike [18], Osilike and Udomene [19] and
others to a much more larger class of operators than those satisfying the contractive
condition (1.6). In [12], the following contractive condition was used: For T': X —
X, there exist A € [0,1) and a monotone increasing function ¢: RT — R with
©(0) = 0, such that

d(Tz,Ty) < o(d(z,Tx)) + Xd(z,y), V z, y € X. (1.7)

We give the following definition which will be considered in the sequel.
Definition 2 (Berinde [5, 6]). Consider a function v: IRt — IR" satisfying
(i) v is monotone increasing;
(ii) ¥"(t) = 0, as n — oo;
(i) >-07 ,¢"(t) converges for all t > 0.

1. A function 1 satisfying (i) and (ii) above is called a comparison function.

2. A function ¢ satisfying (i) and (iii) above is called a (c)-comparison function.
Remark 3. In [5, 6], we have the following:
(1) Any (c)-comparison function is a comparison function.

(ii) Ewvery comparison function satisfies 1(0) = 0.

2 Preliminaries

In this section, we shall consider some basic definitions and results on coupled fixed
point theorems:

Definition 4. [9, 10, 14, 23] Let (X, d) be a metric space. An element (x,y) € X xX
is said to be a coupled fized point of the mapping T: X x X — X if T(x,y) = x and

T<y7 x) =Y.
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Interested readers can also see the articles of the author [15, 16, 17] on the
concept of coupled fixed points.

Let (X, d) be a metric space and T: X x X — X amapping. For (xg,y0) € X x X,
the sequence {(zn,yn)}oy C X x X defined iteratively by

Tn4+1 = T(xn,yn)7 Yn4+1 = T(yn7$n)7 n= 07 17 27 ) (21)

is said to be a coupled fized point iterative procedure, according to [17].
Furthermore, to the best of our knowledge, the pioneering and formal definition
of stability of coupled fixed point iteration is the following due to Olatinwo [17]:

Definition 5. [Olatinwo [17]] Let (X,d) be a complete metric space. Suppose that
Criz(T) ={(z",y") e X x X | T'(2",y") = 2", T(y",2") =y"}

is the set of coupled fized points of T. Let {(xn,yn)}ory C X X X be the sequence
generated by an iterative procedure involving T defined by

Tnt+1 = f(Tv (:En,yn))a Yn+1 = f(Tv (yn,:vn)), n=0,1,2,---, (2'2)

where (xo,yo) € X X X is the initial approzimation and f is some function. Suppose
{(n, yn) }52 9 € XXX converges to a coupled fized point (z*,y*) of T. Let {(un, vn)}5%,
be a sequence in X X X and set

en = d(unt1, f(T, (un,vn)), 0n = d(vnt1, (T, (Vn,un)), (n=0,1,2,--).

Then, the coupled fized point iterative procedure (M) is said to be T—stable, or,
stable with respect to T if and only if lim €, = lim §, = 0 implies lim u, = x*
n—oo n—oo n—o0

and lim v, = y*.
n—oo

Remark 6. If in Eqn. (M), f(T,(zn,yn)) = T(xn,yn) and
f(T, (Yn,z0n)) = T(yn,xyn). then we obtain the coupled fized point iterative
procedure of [23].

Bhaskar and Lakshmikantham [7] proved a coupled fixed point theorem in a
metric space endowed with partial order by employing a weak contractive type
condition. For excellent study on coupled fixed point theorems, we implore our
interested readers to consult Abbas and Beg [1], Beg et al. [3], Chang and Ma [8],
Ciric and Lakshmikantham [10], Lakshmikantham and Ciric [14] and Sabetghadam
et al. [23], in addition to [7] earlier mentioned.

In Olatinwo [17], stability results have been proved for the following three contrac-
tive conditions for which the existence of a unique coupled fixed point has been
established by Sabetghadam et al. [23]. Let (X,d) be a metric space. Then, we
have the following:
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(i) A mapping T': X x X — X is said to be a (k, u)—contraction if and only if there
exist two constants k>0, >0, k4 u < 1, such that, V z, y, u, v € X, we
have

d(T(x,y), T (u,v)) < kd(x,u) + pd(y,v). (2.3)

(ii) For amapping T: X x X — X, there exist constants k > 0, u € [0, %), k+up <1,
such that

d(T(z,y), T (u,v)) < kd(T(z,y),z) + pd(T(u,v),u), ¥V z, y, u, veX. (2.4)

(iii) For a mapping T': X x X — X, there exist constants k >0, u >0, k+p <1,
such that

d(T(z,y), T(u,v)) < kd(T(x,y),u) + pd(T(u,v),x), YV, y, u, ve X. (2.5)

We present the following lemmas which will be used in the sequel.

Lemma 7 (Berinde [4, 5, 6]). If v is a real number such that 0 <y < 1, and {b,}°°

15 a sequence of positive numbers such that lim b, = 0, then for any sequence of
n—oo

positive numbers {an}>2 o satisfying
an+1 < Van_‘_bna(n: O>1)27"')7
we have lim a, = 0.
n—oo

Lemma 8 (Imoru et al. [13]). Ifv: IRY — IR" is a subadditive comparison function
and {€,}5° is a sequence of positive numbers such that lim e, = 0, then for any
n—oo

sequence of positive numbers {u,},~, satisfying
m
Un+1 S Zékwk(un) + €n, N = 07 17 27 T,
k=0

where 6, € [0,1), k=10,1,---,m, 0<% 0 <1, we have li_)m U, = 0.
n [o.¢]

We now establish some stability results for certain contractive conditions.

3 Main Results

Theorem 9. Let (X, d) be a complete metric space and T: X x X — X a mapping
satisfying the rational type contractive condition

ad(x, T(x,y)).d(u, T (u,v))
d(x,u)

d(T(z,y), T(u,v)) < + Bd(z,u), (3.1)
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Va,y, u, v, t # u, « >0, >0, a+F < 1. Suppose T has a coupled fixed point
(x*,y*). For (zo,y0) € X x X, let {(xn,yn)}7y C X x X be the coupled fized point
iterative procedure defined by (S1). Then, the coupled fized point iterative procedure
1s T'—stable.

Proof. Let {zn},2os {Un}peo C X, €n = d(unt1, T (un,vy)) and
On = d(Vnt1, T(vp, up)).

Assume also that lim €, = hm Op = hm (fn +4,) =0.
n—oo

Then, we shall estabhsh that hm un = z* and lim v, = y*. Therefore, by
n—roo n—oo

using (3.1), we obtain

d(un-i-ly I'*) < d(un+17 T(Un, Un)) + d(T(unv /Un)a .’E*),
= d(T(unv ’Un), T(.CL'*, y*)) + €n,
a‘d(un,T(un,vn)).ci(x*,T(x*,y*)) + Bd(un,m*) e, (3 2)

d(un,

— cdln Tt lA") 4 iy, o) + e,

Bd(tp, x*) + €.

IN

Similarly,

d(Un+1, (1}7h u’ﬂ)) + d(T('Un, Un), y*)7
d( (Umun) T( )) + 0y,
“W”w#W“T@x>+mwu>+% (3.3)

Y

(
a.d(vn,T (Vn,un)).d P
el + Bd(vn, ) + 8

= Bd(vn, y*) + On.
Adding (3.2) and (3.3) gives
d(tun+1, %) + d(vns1, y*) < Bld(un, %) + d(vn, y*)] + €0 + On. (3.4)
In (3.4), letting a, = d(un,z*) + d(vn,y*), by = €, + 0n, we have lim b, =

n—oo

lim (e, + d,) =0, 0 < v = [ < 1, then the conditions of Lemma 7 are satisfied.
n—oo
Therefore, using Lemma 7 in (3.4) yields lim [d(un, x*) + d(vp, y*)] = 0. That is,

lim d(up,2*) = 0 and hm d(vn, *) = 0 (or hm up, = z* and l1m vy = Y*).
n—oo

Conversely, let h%m d(un, ) = hﬁ\m d(vn,y*) = 0 and hﬁm (d(up, x )+d(vn, ) =
0. Then, using (3.1) again, we have

en +0n = d(unt+1, T (un,vn)) + d(vni1, T'(vn, un))
< d(upt1,x*) + d(@*, T (un, vp))
+d(’l)n+1, y*) + d(y*v T(UTL? un))
- d(un-f-h x*) + d(Un_H, y*)
+d(T(x*a y*)v T(unv ’Un)) + d(T(y*a 1:*)7 T(vna Un))
< d(unJrla IE*) + d(Un+1a y*) + Oé.d(l“*7T(x*7dy(;))'3§;”’T(u”’v"))

—|—ﬂd(£ﬂ*,un) + a.d(y*,T(y*,d( )-d(vn, T (Vn,un)) + Bd(y Un)

Y 71}7’1)

d(Vny1,9")

IRV

IN
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a.d(z*,x*).d(un,T (un,vn))

= d(un+1,x*) + d(vn-‘rl? y*) + d(l’*,un)
+Bd(x, ) + S A0 Tlnsn)) 4 g (% )

= d(unt1,2") + d(vp+1, y*) + Bd(z*, up) + Bd(y*,v,) = 0 as n — oo,
from which it follows that lim (e, + J,,) = 0, that is, lim €, = lim J,, = 0. O
n—00 n—00 n—00

Theorem 10. Let (X, d) be a complete metric space and T: X x X — X a mapping
satisfying the rational type contractive condition

d(z, T(u,v).d(z,T(z,y)).d(u, T (u,v))
d(z,u) + d(u, T(u,v))

Vo, y u v, a >0, 8€l0,1) and d(x,u) + d(u, T(u,v) > 0. Suppose T has a
coupled fized point (z*,y*). For (zo,y0) € X x X, let {(zn,yn) 2>y C X x X be the
coupled fixed point iterative procedure defined by (S1). Then, the coupled fized point
iterative procedure is T —stable.

d(T(z,y),T(u,v)) <

+ pd(z,u), (3.5)

Proof. Let {zn}." o, {Un}reo C X, €n = d(unt1,T(upn,vy)) and
On = d(vnt1, T (vn,up)).

Assume also that lim ¢, = lim 4, = hm (en + 0,) = 0. Then, we shall establish

n—oo n—oo

that lim w, = z* and lim v, = y*.
n—0o0 n—oo

Therefore, by using (3.5), we obtain

d(un-‘rlvx*) < d(un-‘rlv ( )) ( (umvn)7x*)
= d(T'(un, vn), T(:z:* y)) + €n,
a.d(up,T(z d(un, T (un,vn)).d(x* T (x*,y*)) %
i di f) 5?“33%2()”("’%}5&:@:9 o Bd(un,a7) e (3.6)
=" d(ﬁn,qu,)—i—d(’;c’*;*). : + Bd(urh ZC*) + €n

= Bd(up,x*) + €,

Similarly,

d(anrlv (Una un)) + d(T(Una Un)7 y*)a
d(T (Umun) T(y*,x*)) + on,

Awn,T(y" 7). d(on, T (0nun)).-d(y* T(y" %) ;
¥ TR Ty x*))y 2 Bd(vn, y*) + 00 (3.7)

o a.d(vn, *)d ”Un7T(Un’un)) d(
= yd(v Y)Y y*) Lt Ba(vn, y") + on

(
= Bd(’l)n, Z/*; + 5n

d(anrlv y*)

IIA

IN

Adding (3.6) and (3.7) gives

d(Uns1, ) + d(vns1,y*) < Bd(up, ) + Bd(vn, y*) + € + 0p

= Bld(tn, %) + d(vn, y*)] + €n + 0. (3.8)
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In (3.8), letting a, = d(up,x*) + d(vn,y*), by = €, + On, we have lim b, =

n—oo
li_>m (én +0n) =0, 0 <y = < 1, then the hypotheses of Lemma 7 are satisfied.
n o
Therefore, using Lemma 7 in (3.8) yields li_>m [d(tn, z*) + d(vn,y*™)] = 0. That is,
n o
lim d(un,z*) = 0 and hm d( n,y*) = 0 (or, lim w, = z* and lim v, = y*).
n—o0 n—00 n—00

Conversely, let lim d(un, ) = lim d(vp,y*) = lim (d(un,z*) + d(vn,y*)) = 0.
n—00 n—00 n—oo

Then by using (3.5) again,

€n+0n = d(unt1, T (un, vn)) + d(Vnt1, T (v, un))

d(upt1,2") + d(@*, T (tn, vn)) + d(Vns1,y*) + d(y*, T'(vn, up))
= d(un+1,2*) + d(vps1,y*) + d(T(x*, y*), T (un, vs)) + d(T(y*, 2*), T (vp, un))
(

d(tun11,7%) + (v 1, y*) + LU ngpn LA L)) Al T n.0n))

+5wfwm+a““”%@ﬁ%ﬁﬁﬁ&ﬁgﬂww5+6ﬂymm
= d(uny1,@*) + d(vp 11, y*) + SAE e ) At T 0,)

+ Ba(a, uy) + LI Tty v T o)) L gy, )

=d(unps1,2*) + d(vpt1, y") + Bd(z*, uy) + Bd(y*,vy) = 0 as n — oo,

from which we have that li_>m (€n + 9p) = 0, that is, hm €, = lim 4, =0. O

n—o0

Theorem 11. Let (X,d) be a complete metric space and T : X x X — X a mapping
satisfying the rational type contractive condition

ad(z, T (z,y)[d(z, T (u,v))]9.d(u, T (u,v))
~yd(u, T(u,v)) + d(x,u)

d(T(z,y), T (u,v)) < + ¥(d(z,u)), (3.9)
where o« > 0, v > 0,q > 0, vd(u,T(u,v)) + d(z,u) >0V z, y, u, v € X. Let
Y IRT — IRT be a subadditive comparison function. Suppose T has a coupled fized
point (x*,y*). For (x0,y0) € X X X, let {(zn,yn)}02g C X X X be the coupled fized
point iterative procedure defined by (S1). Then, the coupled fized point iterative
procedure is T—stable.

Proof. Let {mn}n —0> {yn} 0 C X, en= d(tns1, T (tn,vyp)) and
Op = d(vn—l—l,T(vnyun))-

Suppose that lim €, = lim 6, = hm (en +6,) = 0. Then, we shall establish that

TL*)OOOO

lim u, = z* and lim v, = y*. Therefore by using (3.9), we obtain
n—oo n—oo

d(unt1, %) < d(ups1, T(un,vn)) + d(T (up, vn), )
= d(T(unu U’fl)v T(x*v y*)*) —L_ €n . -
< et TP 4l )+
= odlun Tl on) | LA 1 4h(d(un, 7)) + n

= Y (d(upn, x*)) + €,
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that is,
Autns1,7%) < P(d(tin, 7)) + €. (3.10)
Using Lemma 8 in (3.10) gives ILm d(up,z*) = 0. That is, ILm U, = ™.

In a similar manner, we have

d(vn-i-lv y*) < d(vn-l-lv T(Unv un)) + d(T(Um un)’ y*)v
= d(T(UTla un)? T(y*v .I'*)) + 5n7
a.d(vp, T (vn,un).[d(vp,T(y*,x*))]9.d(y*, T (y*,x*)
s sl T g 0721 4y, 44,

= w(d@m y*)) + On,

which yields
d(vpy1,2%) < Y(d(vp, %)) + €. (3.11)
Again, using Lemma 8 in (3.11) gives nhﬁ\lglo d(vp,x*) = 0. That is, hm vy = *
Conversely, let T}Ln;o d(up, x*) = 7}1};0 d(vn,y*) = nan;o(d(un, )—i— d(vn, ))
Then, by using (3.9) again, we obtain

€n + 5n = d(un-i—h (una Un)) + d(vn—i—ly T(Un7 Un))

< d(un+1,2%) + d(@*, T (up, vn)) + d(vn+1,y") + d(y*, T (vn, un))
= d(un+17 ) + d(vn-‘rlv ) + d(T(‘T*7 y*)7 T(um Un)) + d(T(y*7 x*)v T(UTH un))
S d(un+1, ) + d(vn+1a Y )

4 od(@ (e ) [d(z" T (un,vn )] d(un T (un vn))

il T ey ) T )1 T o 0))
+(d(x", un)) + == vd(vn7T$(Iv;7un7)15+nd(y*;vn)m o

+(d(y*, vn))

= (1, 7%) + Avas1,57) + (d(@*, un)) + V(d(y*,va) = 0 as n— oo,
from which we obtain nh_g)lo (en + 0,) = 0, that is, nh_)rgo €y = nhnrolo on = 0. O

Remark 12. Theorem 9 - Theorem 11 are generalizations of Theorem 2.1 - Theorem
2.6 of Olatinwo [17]. Also, Theorem 9 - Theorem 11 are extensions of a multitude
of stability results from fized point consideration to the coupled fixed point setting.

Remark 13. (i) The contractive condition (3.9) reduces to that in (3.5) if v = q =
1 and (t) = Bt, t € IR™.

(ii) The contractive condition (3.9) reduces to that in (3.1) if v =q =0 and
W(t) = Bt, t>0.
Example 14. The following example shows that T: X x X — X satisfies both

the contractive condition (3.5) of Theorem 10 and the contractive condition (3.9) of
Theorem 11:
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Let X = [0,1] € IR and assume the usual metric (that is, d(z,y) = |z — y|,
z, y € X). Define T: X x X — X by
1 if , y € [0, 1)
T(x — 14 1 y Y '
( y) { - %x_§y7 lffE, Y€ [%’1]7
and let a comparison function 1: IR* — IR be defined by v (t) = %t, t € R". Then,
T satisfies the contractive condition (3.5) of Theorem 10 as well as the contractive
condition (3.9) of Theorem 11.

Solution
Case 1: We now show that T' satisﬁes the contractive condition (3.5) as follows:

Let a =1, a:—liﬁ y:%, u=3 amdv—§ Then, we obtain
T(l'ay) = zlp d(a:,u) = gl(;? d($7T($7y)) = %a
T(u,v)=1- i — % =g, d(z,T(u,v)) = 1%, d(u, T(u,v)) = %, and
d(T(z,y),T(u,v)) = g.

But,

d(x, T (u,w).d(x,T(x d(u, T (u,v
L= d(T(z,y),T(u,v)) < a2l d(; e oA Tw0) 4 Bd(z, )

(%) (5)-(3)
158 4
= (£)-(1%)-(3)-(%) + 158,

from which we have that 3 > 14638 That is, 8 € [0,1).

Thus, T satisfies the contractive condition (3.5) of Theorem 10.
Case 2: We now show that T satisfies the contractive condition (3.9) too as in

the following: We assume that a=q= 7 =1 z= %’ Y= %’ w= % and v = %
Then, we obtain T'(z,y) = , d(w,u) = d(z,T(z,y)) = 1%’
T(u,v) = 1— k& = 4, (o Tlu,0)) = f5, d(u,T(w0)) = &, and

1

A(T (). T(u,v)) = 1. Also, b(d(r, >>_ %Now,

331
oy ™+ (o)) = DGR (e, w)

= (5)-(8) + &
— 18j > 387 % = d(T(x,y),T(Ua 1))),

from which it follows therefore, that T satisfies the contractive condition (3.9) of
Theorem 11. Indeed, the coupled fixed point of T'is (3, 3). That is, 7'(3, 3) = 3-

Alternatively, since 1 is a comparison function, we can prove that T satisfies
the contractive condition (3.9) by showing that 0 < ¢(t) < 1, t € R, as demonstrated
below: We have 1(d(z,u)) = 2} and

T D)) < o8 SRR+ o)

= WG 4 y(d(z, u)),

6

w

o
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from which we have

21 126
64 384

5 1 43

~(36)51) = 30

oo =

Pld(z, u)) =

that is, we obtain 2 < ¥(d(z,u)) = 25 < 1.
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