Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 277 -- 285

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

UNIVALENT FUNCTIONS RELATED TO q-ANALOGUE OF GENERALIZED M-SERIES WITH RESPECT TO k-SYMMETRIC POINTS

Sh. Najafzadeh

Abstract. In this paper, we introduce subclasses of analytic functions by using q-analogue of generalized M-series and k-symmetric points. Some special coefficient inequalities are also discussed.

2010 Mathematics Subject Classification: 30C45; 30C50.
Keywords: M-series, q-derivative, univalent function, convolution, k-symmetric points.

Full text

References

  1. A. Chouhan and S. Saraswat, Certain properties of fractional calculus operators associated with M-series , Sci., Ser. A, Math. Sci., 22 (2012), 27--32. MR3058917. Zbl 1258.33013.

  2. G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge university press 96, 2004. MR2128719. Zbl 1129.33005.

  3. S. H. Malik, R. Jain and J. Majid, Certain properties of q-fractional integral operators associated with q-analogue of generalized M-series , UGC Approved Journal, 12(4) (2019), 1006--1015.

  4. S. Najafzadeh, Application of Sălăgean operator on univalent functions with respect to k-symmetric points, Adv. Math., Sci. J., 1 (2016), 39--43. Zbl 1377.30013.

  5. S. D. Purohit and F. Ucar, An application of q-sumudu transform for fractional q-kinetic equation, Turk. J. Math., 42(2) (2018), 726--734. MR3794501. Zbl 07051495.

  6. R. Saxena and R. Kumar, A basic analogue of the generalized H-function, Matematiche (Catania), 50(2) (1995), 263--271. MR1414634. Zbl 0899.33012.

  7. C. Selvaraj, K. Karthikeyan and E. Umadevi, Certain classes of meromorphic multivalent functions with respect to (j, k)-symmetric points, An. Univ. Oradea, Fasc. Mat., 20(2) (2011), 173--180. Zbl 1313.30078.

  8. M. Sharma, Fractional integration and fractional differentiation of the M-series, Fract. Calc. Appl. Anal., 11(2) (2008), 187--191. MR2401326. Zbl 1153.26303.

  9. M. Sharma and R.Jain, A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12(4) (2009), 449--452. MR2598192. Zbl 1196.26013.

  10. S. Sharma and R. Jain, On some properties of generalized q-Mittag-Leffler function, Mathematica Aeterna, 4(6) (2014), 613--619.

  11. Z. Wang, C. Gao and S. Yuan, Some coefficient inequalities for certain subclasses of analytic functions with respect to k-symmetric points, Soochow J. Math., 33(2) (2007), 223--227. MR2330472. Zbl 1130.30015.



Sh. Najafzadeh
Department of Mathematics,
Payame Noor University,
Post Office Box: 19395--3697,
Tehran, Iran.
e-mail: najafzadeh1234@yahoo.ie.

http://www.utgjiu.ro/math/sma