Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 277 -- 285
This work is licensed under a Creative Commons Attribution 4.0 International License.UNIVALENT FUNCTIONS RELATED TO q-ANALOGUE OF GENERALIZED M-SERIES WITH RESPECT TO k-SYMMETRIC POINTS
Sh. Najafzadeh
Abstract. In this paper, we introduce subclasses of analytic functions by using q-analogue of generalized M-series and k-symmetric points. Some special coefficient inequalities are also discussed.
2010 Mathematics Subject Classification: 30C45; 30C50.
Keywords: M-series, q-derivative, univalent function, convolution, k-symmetric points.
References
A. Chouhan and S. Saraswat, Certain properties of fractional calculus operators associated with M-series , Sci., Ser. A, Math. Sci., 22 (2012), 27--32. MR3058917. Zbl 1258.33013.
G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge university press 96, 2004. MR2128719. Zbl 1129.33005.
S. H. Malik, R. Jain and J. Majid, Certain properties of q-fractional integral operators associated with q-analogue of generalized M-series , UGC Approved Journal, 12(4) (2019), 1006--1015.
S. Najafzadeh, Application of Sălăgean operator on univalent functions with respect to k-symmetric points, Adv. Math., Sci. J., 1 (2016), 39--43. Zbl 1377.30013.
S. D. Purohit and F. Ucar, An application of q-sumudu transform for fractional q-kinetic equation, Turk. J. Math., 42(2) (2018), 726--734. MR3794501. Zbl 07051495.
R. Saxena and R. Kumar, A basic analogue of the generalized H-function, Matematiche (Catania), 50(2) (1995), 263--271. MR1414634. Zbl 0899.33012.
C. Selvaraj, K. Karthikeyan and E. Umadevi, Certain classes of meromorphic multivalent functions with respect to (j, k)-symmetric points, An. Univ. Oradea, Fasc. Mat., 20(2) (2011), 173--180. Zbl 1313.30078.
M. Sharma, Fractional integration and fractional differentiation of the M-series, Fract. Calc. Appl. Anal., 11(2) (2008), 187--191. MR2401326. Zbl 1153.26303.
M. Sharma and R.Jain, A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12(4) (2009), 449--452. MR2598192. Zbl 1196.26013.
S. Sharma and R. Jain, On some properties of generalized q-Mittag-Leffler function, Mathematica Aeterna, 4(6) (2014), 613--619.
Z. Wang, C. Gao and S. Yuan, Some coefficient inequalities for certain subclasses of analytic functions with respect to k-symmetric points, Soochow J. Math., 33(2) (2007), 223--227. MR2330472. Zbl 1130.30015.
Sh. Najafzadeh
Department of Mathematics,
Payame Noor University,
Post Office Box: 19395--3697,
Tehran, Iran.
e-mail: najafzadeh1234@yahoo.ie.