Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 029, 60 pages      arXiv:2304.04365      https://doi.org/10.3842/SIGMA.2024.029

Reflection Vectors and Quantum Cohomology of Blowups

Todor Milanov and Xiaokun Xia
Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Received May 30, 2023, in final form March 14, 2024; Published online April 05, 2024

Abstract
Let $X$ be a smooth projective variety with a semisimple quantum cohomology. It is known that the blowup $\operatorname{Bl}_{\rm pt}(X)$ of $X$ at one point also has semisimple quantum cohomology. In particular, the monodromy group of the quantum cohomology of $\operatorname{Bl}_{\rm pt}(X)$ is a reflectiongroup. We found explicit formulas for certain generators of the monodromy group of the quantum cohomology of $\operatorname{Bl}_{\rm pt}(X)$ depending only on the geometry of the exceptional divisor.

Key words: Frobenius structures; Gromov-Witten invariants; quantum cohomology.

pdf (792 kb)   tex (66 kb)  

References

  1. Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps. Vol. II. Monodromy and asymptotics of integrals, Monog. Math., Vol. 82, Birkhäuser, Boston, MA, 2012.
  2. Bateman H., Erdélyi A., Higher transcendental functions. Vol. I, McGraw-Hill Book Co., Inc., New York, 1953.
  3. Bayer A., Semisimple quantum cohomology and blowups, Int. Math. Res. Not. 2004 (2004), 2069-2083, arXiv:math.AG/0403260.
  4. Behrend K., Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), 601-617, arXiv:alg-geom/9601011.
  5. Behrend K., Fantechi B., The intrinsic normal cone, Invent. Math. 128 (1997), 45-88, arXiv:alg-geom/9601010.
  6. Behrend K., Manin Yu., Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), 1-60, arXiv:alg-geom/9506023.
  7. Cotti G., Degenerate Riemann-Hilbert-Birkhoff problems, semisimplicity, and convergence of WDVV-potentials, Lett. Math. Phys. 111 (2021), 99, 44 pages, arXiv:2011.04498.
  8. Dixon A.L., Ferrar W.L., A class of discontinuous integrals, Quart. J. Math. 7 (1936), 81-96.
  9. Dubrovin B., Geometry of $2$D topological field theories, in Integrable Systems and Quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348, arXiv:hep-th/9407018.
  10. Dubrovin B., Geometry and analytic theory of Frobenius manifolds, Doc. Math. 2 (1998), 315-326, arXiv:math.AG/9807034.
  11. Dubrovin B., Painlevé transcendents in two-dimensional topological field theory, in The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287-412, arXiv:math.AG/9803107.
  12. Dubrovin B., Zhang Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, arXiv:math.DG/0108160.
  13. Fomenko A., Fuchs D., Homotopical topology, 2nd ed., Grad. Texts in Math., Vol. 273, Springer, Cham, 2016.
  14. Frenkel E., Givental A., Milanov T., Soliton equations, vertex operators, and simple singularities, Funct. Anal. Other Math. 3 (2010), 47-63, arXiv:0909.4032.
  15. Fulton W., Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3), Springer, Berlin, 1998.
  16. Galkin S., Golyshev V., Iritani H., Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures, Duke Math. J. 165 (2016), 2005-2077, arXiv:1404.6407.
  17. Gathmann A., Gromov-Witten invariants of blow-ups, J. Algebraic Geom. 10 (2001), 399-432, arXiv:math.AG/9804043.
  18. Gelfand S.I., Manin Yu.I., Methods of homological algebra, 2nd ed., Springer Monog. Math., Springer, Berlin, 2003.
  19. Givental A., $A_{n-1}$ singularities and $n$KdV hierarchies, Mosc. Math. J. 3 (2003), 475-505, arXiv:math.AG/0209205.
  20. Givental A.B., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), 551-568, arXiv:math.AG/0108100.
  21. Givental A.B., Milanov T.E., Simple singularities and integrable hierarchies, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., Vol. 232, Birkhäuser, Boston, MA, 2005, 173-201, arXiv:math.AG/0307176.
  22. Grauert H., Remmert R., Coherent analytic sheaves, Grundlehren Math. Wiss., Vol. 265, Springer, Berlin, 1984.
  23. Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Math., Vol. 151, Cambridge University Press, Cambridge, 2002.
  24. Hertling C., Manin Yu.I., Teleman C., An update on semisimple quantum cohomology and $F$-manifolds, Proc. Steklov Inst. Math. 264 (2009), 62-69, arXiv:0803.2769.
  25. Iritani H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016-1079, arXiv:0903.1463.
  26. Manin Yu.I., Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloquium Publications, Vol. 47, American Mathematical Society, Providence, RI, 1999.
  27. Manin Yu.I., Merkulov S.A., Semisimple Frobenius (super)manifolds and quantum cohomology of ${\mathbf P}^r$, Topol. Methods Nonlinear Anal. 9 (1997), 107-161, arXiv:alg-geom/9702014.
  28. Milanov T., The period map for quantum cohomology of $\mathbb{P}^2$, Adv. Math. 351 (2019), 804-869, arXiv:1706.04323.
  29. Milanov T., Saito K., Primitive forms and vertex operators, in preparation.
  30. Nori M.V., Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. 16 (1983), 305-344.
  31. Orlov D.O., Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Russian Acad. Sci. Izv. Math. 41 (1993), 133-141.
  32. Paris R.B., Kaminski D., Asymptotics and Mellin-Barnes integrals, Encyclopedia of Math. Appl., Vol. 85, Cambridge University Press, Cambridge, 2001.
  33. Saito K., Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983), 1231-1264.
  34. Saito M., On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), 27-72.
  35. Shimada I., Lectures on Zariski Van-Kampen theorem, available at http://www.math.sci.hiroshima-u.ac.jp/~shimada/LectureNotes/LNZV.pdf.

Previous article  Next article  Contents of Volume 20 (2024)