Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 028, 21 pages      arXiv:2307.02080      https://doi.org/10.3842/SIGMA.2024.028

Resurgent Structure of the Topological String and the First Painlevé Equation

Kohei Iwaki a and Marcos Mariño b
a) Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
b) Section de Mathématiques et Département de Physique Théorique, Université de Genève, 1211 Genève 4, Switzerland

Received September 13, 2023, in final form March 19, 2024; Published online April 02, 2024

Abstract
We present an explicit formula for the Stokes automorphism acting on the topological string partition function. When written in terms of the dual partition function, our formula implies that flat coordinates in topological string theory transform as quantum periods, and according to the Delabaere-Dillinger-Pham formula. We first show how the formula follows from the non-linear Stokes phenomenon of the Painlevé I equation, together with the connection between its $\tau$-function and topological strings on elliptic curves. Then, we show that this formula is also a consequence of a recent conjecture on the resurgent structure of the topological string, based on the holomorphic anomaly equations, and it is in fact valid for arbitrary Calabi-Yau threefolds.

Key words: resurgence; topological string theory; first Painlevé equation; Borel resummation; Stokes automorphisms.

pdf (2399 kb)   tex (1839 kb)  

References

  1. Alexandrov S., Marino M., Pioline B., Resurgence of refined topological strings and dual partition functions, arXiv:2311.17638.
  2. Alexandrov S., Persson D., Pioline B., Fivebrane instantons, topological wave functions and hypermultiplet moduli spaces, J. High Energy Phys. 2011 (2011), no. 3, 111, 73 pages, arXiv:1010.5792.
  3. Alexandrov S., Pioline B., Theta series, wall-crossing and quantum dilogarithm identities, Lett. Math. Phys. 106 (2016), 1037-1066, arXiv:1511.02892.
  4. Alim M., Saha A., Teschner J., Tulli I., Mathematical structures of non-perturbative topological string theory: from GW to DT invariants, Comm. Math. Phys. 399 (2023), 1039-1101, arXiv:2109.06878.
  5. Baldino S., Schiappa R., Schwick M., Vega R., Resurgent Stokes data for Painlevé equations and two-dimensional quantum (super) gravity, Commun. Number Theory Phys. 17 (2023), 385-552, arXiv:2203.13726.
  6. Bershadsky M., Cecotti S., Ooguri H., Vafa C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), 311-427, arXiv:hep-th/9309140.
  7. Bertola M., Korotkin D., Tau-functions and monodromy symplectomorphisms, Comm. Math. Phys. 388 (2021), 245-290, arXiv:1910.03370.
  8. Boalch P., Quasi-Hamiltonian geometry of meromorphic connections, Duke Math. J. 139 (2007), 369-405, arXiv:math/0203161.
  9. Bonelli G., Lisovyy O., Maruyoshi K., Sciarappa A., Tanzini A., On Painlevé/gauge theory correspondence, Lett. Math. Phys. 107 (2017), 2359-2413, arXiv:1612.06235.
  10. Bouchard V., Eynard B., Reconstructing WKB from topological recursion, J. Éc. Polytech. Math. 4 (2017), 845-908, arXiv:1606.04498.
  11. Bouchard V., Klemm A., Mariño M., Pasquetti S., Remodeling the B-model, Comm. Math. Phys. 287 (2009), 117-178, arXiv:0709.1453.
  12. Bridgeland T., Tau functions from Joyce structures, arXiv:2303.07061.
  13. Bridgeland T., Riemann-Hilbert problems from Donaldson-Thomas theory, Invent. Math. 216 (2019), 69-124, arXiv:1611.03697.
  14. Bridgeland T., Masoero D., On the monodromy of the deformed cubic oscillator, Math. Ann. 385 (2023), 193-258, arXiv:2006.10648.
  15. Bridgeland T., Smith I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 155-278, arXiv:1302.7030.
  16. Codesido S., A geometric approach to non-perturbative quantum mechanics, Ph.D. Thesis, University of Geneva, 2018.
  17. Codesido S., Mariño M., Schiappa R., Non-perturbative quantum mechanics from non-perturbative strings, Ann. Henri Poincaré 20 (2019), 543-603, arXiv:1712.02603.
  18. Coman I., Longhi P., Teschner J., From quantum curves to topological string partition functions II, arXiv:2004.04585.
  19. Couso-Santamaría R., Edelstein J.D., Schiappa R., Vonk M., Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local $\mathbb{CP}^2$, Comm. Math. Phys. 338 (2015), 285-346, arXiv:1407.4821.
  20. Couso-Santamaría R., Edelstein J.D., Schiappa R., Vonk M., Resurgent transseries and the holomorphic anomaly, Ann. Henri Poincaré 17 (2016), 331-399, arXiv:1308.1695.
  21. Couso-Santamaría R., Mariño M., Schiappa R., Resurgence matches quantization, J. Phys. A 50 (2017), 145402, 34 pages, arXiv:1610.06782.
  22. Del Monte F., Longhi P., The threefold way to quantum periods: WKB, TBA equations and $q$-Painlevé, SciPost Phys. 15 (2023), 112, 48 pages, arXiv:2207.07135.
  23. Delabaere E., Dillinger H., Pham F., Résurgence de Voros et périodes des courbes hyperelliptiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 163-199.
  24. Delabaere E., Dillinger H., Pham F., Exact semiclassical expansions for one-dimensional quantum oscillators, J. Math. Phys. 38 (1997), 6126-6184.
  25. Delabaere E., Pham F., Resurgent methods in semi-classical asymptotics, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), 1-94.
  26. Dijkgraaf R., Vafa C., Matrix models, topological strings, and supersymmetric gauge theories, Nuclear Phys. B 644 (2002), 3-20, arXiv:hep-th/0206255.
  27. Drukker N., Mariño M., Putrov P., Nonperturbative aspects of ABJM theory, J. High Energy Phys. 2011 (2011), no. 11, 141, 29 pages, arXiv:1103.4844.
  28. Dunster T.M., Lutz D.A., Schäfke R., Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions, Proc. Roy. Soc. London Ser. A 440 (1993), 37-54.
  29. Écalle J., Les fonctions résurgentes appliquées à l'itération, Université de Paris-Sud, 1981.
  30. Eynard B., Garcia-Failde E., From topological recursion to wave functions and PDEs quantizing hyperelliptic curves, Forum Math. Sigma 11 (2023), e99, 42 pages, arXiv:1911.07795.
  31. Eynard B., Garcia-Failde E., Marchal O., Orantin N., Quantization of classical spectral curves via topological recursion, arXiv:2106.04339.
  32. Eynard B., Orantin N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), 347-452, arXiv:math-ph/0702045.
  33. Eynard B., Orantin N., Mariño M., Holomorphic anomaly and matrix models, J. High Energy Phys. 2007 (2007), no. 6, 058, 20 pages, arXiv:hep-th/0702110.
  34. Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents, Math. Surveys Monogr., Vol. 128, American Mathematical Society, Providence, RI, 2006.
  35. Gaiotto D., Moore G.W., Neitzke A., Spectral networks, Ann. Henri Poincaré 14 (2013), 1643-1731, arXiv:1204.4824.
  36. Gaiotto D., Moore G.W., Neitzke A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239-403, arXiv:0907.3987.
  37. Gamayun O., Iorgov N., Lisovyy O., Conformal field theory of Painlevé VI, J. High Energy Phys. 2012 (2012), no. 10, 038, 24 pages, arXiv:1207.0787.
  38. Ghoshal D., Vafa C., $c=1$ string as the topological theory of the conifold, Nuclear Phys. B 453 (1995), 121-128, arXiv:hep-th/9506122.
  39. Grassi A., Gu J., BPS relations from spectral problems and blowup equations, Lett. Math. Phys. 109 (2019), 1271-1302, arXiv:1609.05914.
  40. Gu J., Relations between Stokes constants of unrefined and Nekrasov-Shatashvili topological strings, arXiv:2307.02079.
  41. Gu J., Kashani-Poor A.-K., Klemm A., Mariño M., Non-perturbative topological string theory on compact Calabi-Yau 3-folds, SciPost Phys. text16 (2024), 079, 84 pages, arXiv:2305.19916.
  42. Gu J., Mariño M., Exact multi-instantons in topological string theory, SciPost Phys. 15 (2023), 179, 36 pages, arXiv:2211.01403.
  43. Gu J., Mariño M., On the resurgent structure of quantum periods, SciPost Phys. 15 (2023), 035, 40 pages, arXiv:2211.03871.
  44. Huang M., Klemm A., Holomorphic anomaly in gauge theories and matrix models, J. High Energy Phys. 2007 (2007), no. 9, 054, 33 pages, arXiv:hep-th/0605195.
  45. Iwaki K., 2-parameter $\tau$-function for the first Painlevé equation: topological recursion and direct monodromy problem via exact WKB analysis, Comm. Math. Phys. 377 (2020), 1047-1098, arXiv:1902.06439.
  46. Iwaki K., Kidwai O., Topological recursion and uncoupled BPS structures I: BPS spectrum and free energies, Adv. Math. 398 (2022), 108191, 54 pages, arXiv:2010.05596.
  47. Iwaki K., Kidwai O., Topological recursion and uncoupled BPS structures II: Voros symbols and the $\tau $-function, Comm. Math. Phys. 399 (2023), 519-572, arXiv:2108.06995.
  48. Iwaki K., Nakanishi T., Exact WKB analysis and cluster algebras, J. Phys. A 47 (2014), 474009, 98 pages, arXiv:1401.7094.
  49. Iwaki K., Nakanishi T., Exact WKB analysis and cluster algebras II: Simple poles, orbifold points, and generalized cluster algebras, Int. Math. Res. Not. 2016 (2016), 4375-4417, arXiv:1409.4641.
  50. Jeong S., Nekrasov N., Riemann-Hilbert correspondence and blown up surface defects, J. High Energy Phys. 2020 (2020), no. 12, 006, 81 pages, arXiv:2007.03660.
  51. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  52. Kapaev A.A., Asymptotic behavior of the solutions of the Painlevé equation of the first kind, Differ. Equ. 24 (1988), 1107-1115.
  53. Kapaev A.A., Quasi-linear stokes phenomenon for the Painlevé first equation, J. Phys. A 37 (2004), 11149-11167, arXiv:nlin.SI/0404026.
  54. Kawai T., Takei Y., Algebraic analysis of singular perturbation theory, Transl. Math. Monogr., Vol. 227, American Mathematical Society, Providence, RI, 2005.
  55. Lisovyy O., Roussillon J., On the connection problem for Painlevé I, J. Phys. A 50 (2017), 255202, 15 pages, arXiv:1612.08382.
  56. Marchal O., Orantin N., Quantization of hyper-elliptic curves from isomonodromic systems and topological recursion, J. Geom. Phys. 171 (2022), 104407, 44 pages, arXiv:1911.07739.
  57. Mariño M., Schwick M., Non-perturbative real topological strings, arXiv:2309.12046.
  58. Mitschi C., Sauzin D., Divergent series, summability and resurgence. I, Lecture Notes in Math., Vol. 2153, Springer, 2016.
  59. Nemes G., On the Borel summability of WKB solutions of certain Schrödinger-type differential equations, J. Approx. Theory 265 (2021), 105562, 30 pages, arXiv:2004.13367.
  60. Nikolaev N., Existence and uniqueness of exact WKB solutions for second-order singularly perturbed linear ODEs, Comm. Math. Phys. 400 (2023), 463-517, arXiv:2106.10248.
  61. Pasquetti S., Schiappa R., Borel and Stokes nonperturbative phenomena in topological string theory and $c=1$ matrix models, Ann. Henri Poincaré 11 (2010), 351-431, arXiv:0907.4082.
  62. Silverstone H.J., JWKB connection-formula problem revisited via Borel summation, Phys. Rev. Lett. 55 (1985), 2523-2526.
  63. Strebel K., Quadratic differentials, Ergeb. Math. Grenzgeb. (3), Vol. 5, Springer, Berlin, 1984.
  64. Takei Y., On the connection formula for the first Painlevé equation—from the viewpoint of the exact WKB analysis, Sūrikaisekikenkyūsho Kōkyūroku 931 (1995), 70-99.
  65. Takei Y., An explicit description of the connection formula for the first Painlevé equation, in Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear, Kyoto University Press, Kyoto, 2000, 271-296.
  66. van der Put M., Saito M.-H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611-2667, arXiv:0902.1702.
  67. van Spaendonck A., Vonk M., Painlevé I and exact WKB: Stokes phenomenon for two-parameter transseries, J. Phys. A 55 (2022), 454003, 64 pages, arXiv:2204.09062.
  68. Voros A., The return of the quartic oscillator: the complex WKB method, Ann. Inst. H. Poincaré Sect. A (N.S.) 39 (1983), 211-338.

Previous article  Next article  Contents of Volume 20 (2024)