Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 017, 15 pages      arXiv:2305.07371      https://doi.org/10.3842/SIGMA.2024.017

On Pre-Novikov Algebras and Derived Zinbiel Variety

Pavel Kolesnikov a, Farukh Mashurov b and Bauyrzhan Sartayev cd
a) Sobolev Institute of Mathematics, Novosibirsk, Russia
b) Shenzhen International Center for Mathematics (SICM), Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
c) Narxoz University, Almaty, Kazakhstan
d) United Arab Emirates University, Al Ain, United Arab Emirates

Received August 31, 2023, in final form February 05, 2024; Published online February 28, 2024

Abstract
For a non-associative algebra $A$ with a derivation $d$, its derived algebra $A^{(d)}$ is the same space equipped with new operations $a\succ b = d(a)b$, $a\prec b = ad(b)$, $a,b\in A$. Given a variety ${\rm Var}$ of algebras, its derived variety is generated by all derived algebras $A^{(d)}$ for all $A$ in ${\rm Var}$ and for all derivations $d$ of $A$. The same terminology is applied to binary operads governing varieties of non-associative algebras. For example, the operad of Novikov algebras is the derived one for the operad of (associative) commutative algebras. We state a sufficient condition for every algebra from a derived variety to be embeddable into an appropriate differential algebra of the corresponding variety. We also find that for ${\rm Var} = {\rm Zinb}$, the variety of Zinbiel algebras, there exist algebras from the derived variety (which coincides with the class of pre-Novikov algebras) that cannot be embedded into a Zinbiel algebra with a derivation.

Key words: Novikov algebra; derivation; dendriform algebra; Zinbiel algebra.

pdf (394 kb)   tex (24 kb)  

References

  1. Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. 2013 (2013), 485-524, arXiv:1106.6080.
  2. Balinskii A.A., Novikov S.P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Sov. Math. Dokl. 32 (1985), 228-231.
  3. Bokut L.A., Chen Y., Gröbner-Shirshov bases and their calculation, Bull. Math. Sci. 4 (2014), 325-395, arXiv:1303.5366.
  4. Bokut L.A., Chen Y., Zhang Z., Gröbner-Shirshov bases method for Gelfand-Dorfman-Novikov algebras, J. Algebra Appl. 16 (2017), 1750001, 22 pages, arXiv:1506.03466.
  5. Bremner M.R., Dotsenko V., Algebraic operads. An algorithmic companion, CRC Press, Boca Raton, FL, 2016.
  6. Dotsenko V., Tamaroff P., Endofunctors and Poincaré-Birkhoff-Witt theorems, Int. Math. Res. Not. 2021 (2021), 12670-12690, arXiv:1804.06485.
  7. Dzhumadil'daev A.S., Codimension growth and non-Koszulity of Novikov operad, Comm. Algebra 39 (2011), 2943-2952.
  8. Dzhumadil'daev A.S., Ismailov N.A., $S_n$- and ${\rm GL}_n$-module structures on free Novikov algebras, J. Algebra 416 (2014), 287-313.
  9. Dzhumadil'daev A.S., Löfwall C., Trees, free right-symmetric algebras, free Novikov algebras and identities, Homology Homotopy Appl. 4 (2002), 165-190.
  10. Gel'fand I.M., Dorfman I.Ya., Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl. 13 (1979), 248-262.
  11. Ginzburg V., Kapranov M., Koszul duality for operads, Duke Math. J. 76 (1994), 203-272, arXiv:0709.1228.
  12. Gubarev V.Yu., Poincaré-Birkhoff-Witt theorem for pre-Lie and post-Lie algebras, J. Lie Theory 30 (2020), 223-238, arXiv:1903.02960.
  13. Gubarev V.Yu., Kolesnikov P.S., Operads of decorated trees and their duals, Comment. Math. Univ. Carolin. 55 (2014), 421-445, arXiv:1401.3534.
  14. Guo L., An introduction to Rota-Baxter algebra, Surv. Mod. Math., Vol. 4, International Press, Somerville, MA, 2012.
  15. Hong Y., Li F., Left-symmetric conformal algebras and vertex algebras, J. Pure Appl. Algebra 219 (2015), 3543-3567.
  16. Kac V., Vertex algebras for beginners, Univ. Lecture Ser., Vol. 10, American Mathematical Society, Providence, RI, 1998.
  17. Kolesnikov P.S., Varieties of dialgebras, and conformal algebras, Sib. Math. J. 49 (2008), 257-272, arXiv:math.QA/0611501.
  18. Kolesnikov P.S., Sartayev B.K., On the embedding of left-symmetric algebras into differential Perm-algebras, Comm. Algebra 50 (2022), 3246-3260, arXiv:2106.00367.
  19. Kolesnikov P.S., Sartayev B.K., Orazgaliev A., Gelfand-Dorfman algebras, derived identities, and the Manin product of operads, J. Algebra 539 (2019), 260-284, arXiv:1903.02238.
  20. Loday J.-L., Dialgebras, in Dialgebras and Related Operads, Lecture Notes in Math., Vol. 1763, Springer, Berlin, 2001, 7-66, arXiv:math.QA/0102053.
  21. Sartayev B., Kolesnikov P., Noncommutative Novikov algebras, Eur. J. Math. 9 (2023), 35, 18 pages, arXiv:2204.08912.
  22. Vallette B., Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. Reine Angew. Math. 620 (2008), 105-164, arXiv:math.QA/0609002.
  23. Xu X., Quadratic conformal superalgebras, J. Algebra 231 (2000), 1-38, arXiv:math.QA/9911219.
  24. Xu Z., Hong Y., One-dimensional central extensions and simplicities of a class of left-symmetric conformal algebras, arXiv:2304.05001.

Previous article  Next article  Contents of Volume 20 (2024)