Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 016, 44 pages      arXiv:2212.11243      https://doi.org/10.3842/SIGMA.2024.016

Color-Dressed Generalized Biadjoint Scalar Amplitudes: Local Planarity

Freddy Cachazo a, Nick Early b and Yong Zhang a
a) Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
b) Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

Received August 25, 2023, in final form February 04, 2024; Published online February 21, 2024

Abstract
The biadjoint scalar theory has cubic interactions and fields transforming in the biadjoint representation of ${\rm SU}(N)\times {\rm SU}\big({\tilde N}\big)$. Amplitudes are ''color'' decomposed in terms of partial amplitudes computed using Feynman diagrams which are simultaneously planar with respect to two orderings. In 2019, a generalization of biadjoint scalar amplitudes based on generalized Feynman diagrams (GFDs) was introduced. GFDs are collections of Feynman diagrams derived by incorporating an additional constraint of ''local planarity'' into the construction of the arrangements of metric trees in combinatorics. In this work, we propose a natural generalization of color orderings which leads to color-dressed amplitudes. A generalized color ordering (GCO) is defined as a collection of standard color orderings that is induced, in a precise sense, from an arrangement of projective lines on $\mathbb{RP}^2$. We present results for $n\leq 9$ generalized color orderings and GFDs, uncovering new phenomena in each case. We discover generalized decoupling identities and propose a definition of the ''colorless'' generalized scalar amplitude. We also propose a notion of GCOs for arbitrary $\mathbb{RP}^{k-1}$, discuss some of their properties, and comment on their GFDs. In a companion paper, we explore the definition of partial amplitudes using CEGM integral formulas.

Key words: generalized color orderings; generalized Feynman diagrams; generalized decoupling identities; CEGM integral formulas; generalized biadjoint amplitudes.

pdf (766 kb)   tex (84 kb)  

References

  1. Adamo T., Carrasco J.J.M., Carrillo-González M., Chiodaroli M., Elvang H., Johansson H., O'Connell D., Roiban R., Schlotterer O., Snowmass white paper: the double copy and its applications, arXiv:2204.06547.
  2. Agostini D., Brysiewicz T., Fevola C., Kühne L., Sturmfels B., Telen S., Likelihood degenerations, Adv. Math. 414 (2023), 108863, 39 pages, arXiv:2107.10518.
  3. Arkani-Hamed N., Bai Y., He S., Yan G., Scattering forms and the positive geometry of kinematics, color and the worldsheet, J. High Energy Phys. 2018 (2018), no. 5, 096, 76 pages, arXiv:1711.09102.
  4. Arkani-Hamed N., Bourjaily J., Cachazo F., Goncharov A., Postnikov A., Trnka J., Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge, 2016.
  5. Arkani-Hamed N., He S., Lam T., Stringy canonical forms, J. High Energy Phys. 2021 (2021), no. 2, 069, 59 pages, arXiv:1912.08707.
  6. Arkani-Hamed N., Lam T., Spradlin M., Non-perturbative geometries for planar $\mathcal N = 4$ SYM amplitudes, J. High Energy Phys. 2021 (2021), no. 3, 065, 14 pages, arXiv:1912.08222.
  7. Arkani-Hamed N., Lam T., Spradlin M., Positive configuration space, Comm. Math. Phys. 384 (2021), 909-954, arXiv:2003.03904.
  8. Bendle D., Böhm J., Ren Y., Schröter B., Massively parallel computation of tropical varieties, their positive part, and tropical Grassmannians, J. Symbolic Comput. 120 (2024), 102224, 28 pages.
  9. Bern Z., Carrasco J.J., The duality between color and kinematics and its applications, arXiv:1909.01358.
  10. Bern Z., Carrasco J.J., Chiodaroli M., Johansson H., Roiban R., The SAGEX review on scattering amplitudes. Chapter 2: An invitation to color-kinematics duality and the double copy, J. Phys. A 55 (2022), 443003, 37 pages, arXiv:2203.13013.
  11. Bern Z., Carrasco J.J.M., Johansson H., New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008), 085011, 19 pages, arXiv:0805.3993.
  12. Björner A., Las Vergnas M., Sturmfels B., White N., Ziegler G.M., Oriented matroids, Encyclopedia Math. Appl., Vol. 46, Cambridge University Press, Cambridge, 1999.
  13. Borges F., Cachazo F., Generalized planar Feynman diagrams: collections, J. High Energy Phys. 2020 (2020), no. 11, 164, 27 pages, arXiv:1910.10674.
  14. Cachazo F., Early N., Biadjoint scalars and associahedra from residues of generalized amplitudes, J. High Energy Phys. 2023 (2023), no. 10, 015, 26 pages, arXiv:2204.01743.
  15. Cachazo F., Early N., Guevara A., Mizera S., Scattering equations: from projective spaces to tropical Grassmannians, J. High Energy Phys. 2019 (2019), no. 6, 039, 32 pages, arXiv:1903.08904.
  16. Cachazo F., Early N., Zhang Y., Generalized color orderings: CEGM integrands and decoupling identities, arXiv:2304.07351.
  17. Cachazo F., Guevara A., Umbert B., Zhang Y., Planar matrices and arrays of Feynman diagrams, arXiv:1912.09422.
  18. Cachazo F., He S., Yuan E.Y., Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 1013 (2014), 171601, 4 pages, arXiv:1307.2199.
  19. Cachazo F., He S., Yuan E.Y., Scattering of massless particles: scalars, gluons and gravitons, J. High Energy Phys. 2014 (2014), no. 7, 033, 33 pages, arXiv:1309.0885.
  20. Celaya M., Loho G., Yuen C.H., Oriented matroids from triangulations of products of simplices, arXiv:2005.01787.
  21. Dolan L., Goddard P., The polynomial form of the scattering equations, J. High Energy Phys. 2014 (2014), no. 7, 029, 23 pages, arXiv:1402.7374.
  22. Drummond J., Foster J., Gürdougan O., Kalousios C., Tropical Grassmannians, cluster algebras and scattering amplitudes, J. High Energy Phys. 2020 (2020), no. 4, 146, 22 pages, arXiv:1907.01053.
  23. Drummond J., Foster J., Gürdougan O., Kalousios C., Tropical fans, scattering equations and amplitudes, J. High Energy Phys. 2021 (2021), no. 11, 071, 26 pages, arXiv:2002.04624.
  24. Early N., Factorization for generalized biadjoint scalar amplitudes via matroid subdivisions, arXiv:2211.16623.
  25. Early N., From weakly separated collections to matroid subdivisions, Comb. Theory 2 (2022), no. 2, 2, 35 pages, arXiv:1910.11522.
  26. Early N., Planar kinematic invariants, matroid subdivisions and generalized Feynman diagrams, arXiv:1912.13513.
  27. Early N., Moduli space tilings and Lie-theoretic color factors, arXiv:2310.12130.
  28. Fukuda K., Miyata H., Moriyama S., Complete enumeration of small realizable oriented matroids, Discrete Comput. Geom. 49 (2013), 359-381, arXiv:1204.0645.
  29. Gao X., He S., Zhang Y., Labelled tree graphs, Feynman diagrams and disk integrals, J. High Energy Phys. 2017 (2017), no. 11, 144, 38 pages, arXiv:1708.08701.
  30. Gates Jr. S.J., Mak S.N.H., Spradlin M., Volovich A., Cluster superalgebras and stringy integrals, arXiv:2111.08186.
  31. Guevara A., Zhang Y., Planar matrices and arrays of Feynman diagrams: poles for higher $k$, arXiv:2007.15679.
  32. He S., Hou L., Tian J., Zhang Y., Kinematic numerators from the worldsheet: cubic trees from labelled trees, J. High Energy Phys. 2021 (2021), no. 8, 118, 23 pages, arXiv:2103.15810.
  33. He S., Ren L., Zhang Y., Notes on polytopes, amplitudes and boundary configurations for Grassmannian string integrals, J. High Energy Phys. 2020 (2020), no. 4, 140, 37 pages, arXiv:2001.09603.
  34. He S., Wang Y., Zhang Y., Zhao P., Notes on worldsheet-like variables for cluster configuration spaces, SIGMA 19 (2023), 045, 24 pages, arXiv:2109.13900.
  35. He S., Yan G., Zhang C., Zhang Y., Scattering forms, worldsheet forms and amplitudes from subspaces, J. High Energy Phys. 2018 (2018), no. 8, 040, 32 pages, arXiv:1803.11302.
  36. Henke N., Papathanasiou G., Singularities of eight- and nine-particle amplitudes from cluster algebras and tropical geometry, J. High Energy Phys. 2021 (2021), no. 10, 007, 60 pages, arXiv:2106.01392.
  37. Herderschee A., He S., Teng F., Zhang Y., On positive geometry and scattering forms for matter particles, J. High Energy Phys. 2020 (2020), no. 6, 030, 44 pages, arXiv:1912.08307.
  38. Herrmann S., Jensen A., Joswig M., Sturmfels B., How to draw tropical planes, Electron. J. Combin. 16 (2009), no. 2, 6, 26 pages, arXiv:0808.2383.
  39. Lukowski T., Parisi M., Williams L.K., The positive tropical Grassmannian, the hypersimplex, and the $m=2$ amplituhedron, Int. Math. Res. Not. 2023 (2023), 16778-16836, arXiv:2002.06164.
  40. Mafra C.R., Berends-Giele recursion for double-color-ordered amplitudes, J. High Energy Phys. 2016 (2016), no. 7, 080, 15 pages, arXiv:1603.09731.
  41. Mangano M.L., Parke S.J., Multiparton amplitudes in gauge theories, Phys. Rep. 200 (1991), 301-367, arXiv:hep-th/0509223.
  42. Pachter L., Sturmfels B., Tropical geometry of statistical models, Proc. Natl. Acad. Sci. 101 (2004), 16132-16137, arXiv:q-bio/0311009.
  43. Postnikov A., Total positivity, Grassmannians, and networks, arXiv:math.CO/0609764.
  44. Sekiguchi J., Configurations of seven lines on the real projective plane and the root system of type $E_7$, J. Math. Soc. Japan 51 (1999), 987-1013.
  45. Skorobogatov A.N., On the number of representations of matroids over finite fields, Des. Codes Cryptogr. 9 (1996), 215-226.
  46. Speyer D., Sturmfels B., The tropical Grassmannian, Adv. Geom. 4 (2004), 389-411, arXiv:math.AG/0304218.
  47. Speyer D., Williams L., The tropical totally positive Grassmannian, J. Algebraic Combin. 22 (2005), 189-210, arXiv:math.CO/0312297.
  48. Speyer D., Williams L.K., The positive Dressian equals the positive tropical Grassmannian, Trans. Amer. Math. Soc. Ser. B 8 (2021), 330-353, arXiv:2003.10231.
  49. Speyer D.E., A matroid invariant via the $K$-theory of the Grassmannian, Adv. Math. 221 (2009), 882-913, arXiv:math.AG/0603551.
  50. Yoshida M., Hypergeometric functions, my love. Modular interpretations of configuration spaces, Asp. Math., Vol. 32, Friedr. Vieweg & Sohn, Braunschweig, 1997.

Previous article  Next article  Contents of Volume 20 (2024)