PORTUGALIAE MATHEMATICA Vol. 53, No. 4, pp. 457-470 (1996) |
|
Equations Elliptiques Semi Lineaires dans des Domaines Non Bornes de $\R^{N}$Khodja BrahimUniversité D'Annaba, Institut de Mathématiques,B.P. 12 Annaba - ALGERIE Abstract: Let $f$ be a locally lipschitz continuous function verifying $f(0)=0$. We consider the problem $$ \cases{-\Delta u+f(u)=0& $u\in H^{2}(\Omega)\cap L^{\infty}(\Omega)$,\cr Bu=0& on $\Gamma\virg$}\leqno({\rm P}) $$ with $Bu=u$ (Dirichlet's condition) or $Bu=u_{n}$ (Neumann's condition). We show that if $$ \Omega=\R^{2}\times G\rmdu{where} \hbox{$G$ is an open set of $\R^{N}$} $$ or $$ \Omega\rmdu{is an open set of}\R^{N} (N\ge2), $$ verifying $\exists\,\chi\in\R^{N}$, $\chi$ constant $\langle n,\chi\rangle>0$ on $\Gamma$ and $F(u)\ge0$. Full text of the article:
Electronic version published on: 29 Mar 2001. This page was last modified: 27 Nov 2007.
© 1996 Sociedade Portuguesa de Matemática
|