Publications de l’Institut Mathématique, Nouvelle Série Vol. 101[115], pp. 143–149 (2017) |
|
A NOTE ON THE FEKETE–SZEGÖ PROBLEM FOR CLOSE-TO-CONVEX FUNCTIONS WITH RESPECT TO CONVEX FUNCTIONSBogumiła Kowalczyk, Adam Lecko, H. M. SrivastavaDepartment of Complex Analysis, University of Warmia and Mazury, Olsztyn, Poland; Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada; China Medical University, Taichung, Taiwan, Republic of ChinaAbstract: We discuss the sharpness of the bound of the Fekete–Szegö functional for close-to-convex functions with respect to convex functions. We also briefly consider other related developments involving the Fekete–Szegö functional () as well as the corresponding Hankel determinant for the Taylor–Maclaurin coefficients of normalized univalent functions in the open unit disk , being the set of positive integers. Keywords: analytic functions; convex functions; Fekete–Szegö problem; Hankel determinant; Taylor-Maclaurin coefficients; close-to-convex functions with respect to a convex function; Carathéodory class; Schwarz functions Classification (MSC2000): 30C45 Full text of the article: (for faster download, first choose a mirror)
Electronic fulltext finalized on: 24 Apr 2017. This page was last modified: 11 May 2017.
© 2017 Mathematical Institute of the Serbian Academy of Science and Arts
|