EMIS ELibM Electronic Journals Publications de l'Institut Mathématique, Nouvelle Série
Vol. 98(112), pp. 281–285 (2015)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home


Pick a mirror

 

A convergence theorem of multi-step iterative scheme for nonlinear maps

Adesanmi Alao Mogbademu

Department of Mathematics, University of Lagos, Lagos, Nigeria

Abstract: Let $K$ be a nonempty closed convex subset of a real Banach space $X$, $T:K\to K$ a nearly uniformly $L$-Lipschitzian (with sequence $\{r_n\}$) asymptotically generalized $\Phi$-hemicontractive mapping (with sequence ${k_n}\subset [1,\infty)$, $\lim_{n\to\infty} k_n=1$) such that $F(T)=\{\rho\in K:T\rho=\rho\}$. Let $\{\alpha_n\}_{n\geq 0}$, $\{\beta^k_n\}_{n\geq 0}$ be real sequences in $[0,1]$ satisfying the conditions: (i) $\sum_{n\geq 0}\alpha_n=\infty$ (ii) $\lim_{n\to\infty}\alpha_n,\beta^k_n=0,\quad k=1, 2,\ldots,p-1$. For arbitrary $x_0\in K$, let $\{x_n\}_{n\geq 0}$ be a multi-step sequence iteratively defined by \begin{align} x_{n+1}&=(1-\alpha_n)x_n+\alpha_nT^ny^1_n,\quad n\geq 0,\notag
y^k_n&=(1-\beta^k_n)x_n+\beta^k_nT^ny^{k+1}_n,\quad k=1, 2,\ldots, p-2,\notag
y^{p-1}_n&=(1-\beta^{p-1}_n)x_n+\beta^{p-1}_nT^nx_n,\quad n\geq 0, p\geq 2. \end{align} Then, $\{x_n\}_{n\geq 0}$ converges strongly to $\rho\in F(T)$. The result proved in this note significantly improve the results of Kim et al. \cite{k1}.

Keywords: Mann iteration; multi-step iteration; asymptotically generalized $\Phi$-hemi contractive mappings; nearly Lipschitzian mapping; uniformly $L$-Lipschitzian; Banach space

Classification (MSC2000): 47H10; 46A03

Full text of the article: (for faster download, first choose a mirror)


Electronic fulltext finalized on: 18 Nov 2015. This page was last modified: 6 Jan 2016.

© 2015 Mathematical Institute of the Serbian Academy of Science and Arts
© 2015–2016 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition