EMIS ELibM Electronic Journals Publications de l'Institut Mathématique, Nouvelle Série
Vol. 89(103), pp. 49–56 (2011)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home


Pick a mirror

 

HEREDITARILY INDECOMPOSABLE HAUSDORFF CONTINUA HAVE UNIQUE HYPERSPACES $2^X$ AND $C_n(X)$

Alejandro Illanes

Instituto de Matematicas, Universidad Nacional Autonoma de México, Area de la Investigacion Cientifica, Circuito Exterior, Ciudad Universitaria, México, 04510, D.F., México

Abstract: Let $X$ be a Hausdorff continuum (a compact connected Hausdorff space). Let $2^X$ (respectively, $C_n(X)$) denote the hyperspace of nonempty closed subsets of $X$ (respectively, nonempty closed subsets of $X$ with at most $n$ components), with the Vietoris topology. We prove that if $X$ is hereditarily indecomposable, $Y$ is a Hausdorff continuum and $2^X$ (respectively $C_n(X)$) is homeomorphic to $2^Y$ (respectively, $C_n(Y) $), then $X$ is homeomorphic to $Y$.

Keywords: generalized arc, Hausdorff continuum, hereditarily indecomposable, hyperspace, unique hyperspace, Vietoris topology

Classification (MSC2000): 54B20

Full text of the article: (for faster download, first choose a mirror)


Electronic fulltext finalized on: 6 Apr 2011. This page was last modified: 16 Oct 2012.

© 2011 Mathematical Institute of the Serbian Academy of Science and Arts
© 2011–2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition