EMIS ELibM Electronic Journals PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.)
Vol. 52(66), pp. 18--26 (1992)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

On the Fekete-Szego theorem for close-to-convex functions

A. Chonweerayoot, D.K. Thomas and W. Upakarnitikaset

Department of Mathematics and Computer Science, University of Wales, Swansea SA2 8PP, Wales, U.K. (Thomas) and Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand (A. Chonweerayoot and W. Upakarnitikaset)

Abstract: Let $K(\beta)$ be the class of normalised close-to-convex functions with order $\beta\ge0$, defined in the unit disc $D$ by $$ \left|\arg e^{i\lambda}\dfrac{zf'(z)}{g(z)}\right|\le\dfrac{\pi\beta}{2}, $$ for $|\lambda|<\pi/2$ and $g$ starlike in $D$. For $f\in K(\beta)$ with $f(z)=z+a_2z^2+a_3z^3+\cdots$ and $z\in D$, sharp bounds are given for $|a_3-\mu a_2^2|$ for real $\mu$.

Classification (MSC2000): 30C45

Full text of the article:


Electronic fulltext finalized on: 2 Nov 2001. This page was last modified: 16 Nov 2001.

© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
© 2001 ELibM for the EMIS Electronic Edition