EMIS ELibM Electronic Journals PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.)
Vol. 52(66), pp. 10--12 (1992)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

Power moments of the error term for the approximate functional equation of the Riemann zeta-function

Isao Kiuchi

Department of Mathematics,Keio University, 14-1, Hiyoshi, 3 chome, Kohoku-ku, Yokohama, 223 Japan

Abstract: Let $\zeta(s)$ be the Riemann zeta-function, $d(n)$ the number of positive divisors of the integer $n$, and $$ R(s;t/2\pi) =\zeta^2(s) -\sum_{n\le t/2\pi}\!\!\!\strut'\enskip d(n)n^{-s} -\chi^2(s) \sum_{n\le t/2\pi}\!\!\!\strut'\enskip d(n)n^{s-1}, $$ where $$ \chi(s)=2^s\pi^{s-1}\sin(\frac12\pi s)\Gamma(1-s). $$ We obtain the following power moment estimates: $$ \int_1^T |R(\frac12+it;t/2\pi)|^A\,dt \ll \cases T^{1-\frac14A+\vaeepsilon},&0\le A\le4,
1,&A>4.\endcases $$

Classification (MSC2000): 11M06

Full text of the article:


Electronic fulltext finalized on: 2 Nov 2001. This page was last modified: 16 Nov 2001.

© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
© 2001 ELibM for the EMIS Electronic Edition