PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 52(66), pp. 10--12 (1992) |
|
Power moments of the error term for the approximate functional equation of the Riemann zeta-functionIsao KiuchiDepartment of Mathematics,Keio University, 14-1, Hiyoshi, 3 chome, Kohoku-ku, Yokohama, 223 JapanAbstract: Let $\zeta(s)$ be the Riemann zeta-function, $d(n)$ the number of positive divisors of the integer $n$, and $$ R(s;t/2\pi) =\zeta^2(s) -\sum_{n\le t/2\pi}\!\!\!\strut'\enskip d(n)n^{-s} -\chi^2(s) \sum_{n\le t/2\pi}\!\!\!\strut'\enskip d(n)n^{s-1}, $$ where $$ \chi(s)=2^s\pi^{s-1}\sin(\frac12\pi s)\Gamma(1-s). $$ We obtain the following power moment estimates: $$ \int_1^T |R(\frac12+it;t/2\pi)|^A\,dt \ll \cases T^{1-\frac14A+\vaeepsilon},&0\le A\le4, Classification (MSC2000): 11M06 Full text of the article:
Electronic fulltext finalized on: 2 Nov 2001. This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|