Vol. 37(51), pp. 129--138 (1985) |
|
O shodimosti raznostnyh shem dlya uravneniya $-\Delta u+cu=f$ na obobwennyh resheniyah iz $W_{2,*}^s(-\inftyB.S. Jovanovi\'c, L.D. Ivanovi\'c and E, \v SiliMatemati\v cki fakultet, Beograd, YugoslaviaAbstract: Issleduetsya shodimost' raznostnyh shem, approksimiruyushchih uravnenie $-\Delta u+cu=f,\, c$ usloviyami periodichnosti. Pokazano, chto obychnaya shema ``krest'' s usrednennoi chas'yu, shoditsya v diskretnoi $W_{2^*}^m$-norme so skorost'yu $O(h^\alpha)$, esli reshenie ishodnoi zadachi prinadlezhit periodicheskomu prostranstvu Soboleva--Slobodeckogo $W_{2,^*}^{m+\alpha}$ ($m=0, \pm 1, \pm 2,\ldots$; $0<\alpha\leq 2$). Full text of the article:
Electronic fulltext finalized on: 2 Nov 2001. This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|