Mathematical Problems in Engineering
Volume 2010 (2010), Article ID 465835, 26 pages
doi:10.1155/2010/465835
Research Article

Pulsatile Flow of a Two-Fluid Model for Blood Flow through Arterial Stenosis

School of Mathematical Sciences, University Science Malaysia, 11800 Penang, Malaysia

Received 25 January 2010; Accepted 4 April 2010

Academic Editor: Saad A. Ragab

Copyright © 2010 D. S. Sankar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Pulsatile flow of a two-fluid model for blood flow through stenosed narrow arteries is studied through a mathematical analysis. Blood is treated as two-phase fluid model with the suspension of all the erythrocytes in the as Herschel-Bulkley fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the system of nonlinear partial differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The variations of these flow quantities with stenosis size, yield stress, axial distance, pulsatility and amplitude are analyzed. It is found that pressure drop, plug core radius, wall shear stress and resistance to flow increase as the yield stress or stenosis size increases while all other parameters held constant. It is observed that the percentage of increase in the magnitudes of the wall shear stress and resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with that of the single-fluid model of the Herschel-Bulkley fluid. Thus, the presence of the peripheral layer helps in the functioning of the diseased arterial system.