Copyright © 2013 Binxin Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Simulations of interface evolution and stress distribution near weld line in the viscoelastic melt mold filling process are achieved according to the viscoelastic-Newtonian two-phase model. The finite volume methods on nonstaggered grids are used to solve the model. The level set method is used to capture the melt interface. The interface evolution of the viscoelastic melt in the mold filling process with an insert in is captured accurately and compared with the result obtained in the experiment. Numerical results show that the stress distribution is anisotropic near the weld line district and the stress distribution varies greatly at different positions of the weld line district due to the complicated flow behavior after the two streams of melt meet. The stress increases quickly near the weld line district and then decreases gradually until reaching the tail of the mold cavity. The maximum value of the stress appears at some point after the insert.