Department of Mathematics, Central South University, Changsha, Hunan 410083, China
Academic Editor: C. Conca
Copyright © 2013 Shifeng Ding and Weijun Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Multiple zeta values are the numbers defined by the convergent series , where , , , are positive integers with . For , let be the sum of all multiple zeta values with even arguments whose weight is and whose depth is . The well-known result was extended to and by Z. Shen and T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbers and then gave a direct formula for for arbitrary . In this paper we apply a technique introduced by Granville to present an algorithm to calculate and prove that the direct formula can also be deduced from Eisenstein's double product.