Journal of Applied Mathematics
Volume 2013 (2013), Article ID 327297, 9 pages
http://dx.doi.org/10.1155/2013/327297
Research Article

The Fractal Dimension of River Length Based on the Observed Data

1Key Laboratory of Hydraulic and Waterway Engineering, The Ministry of Education and National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing 400074, China
2Southwestern Research Institute of Water Transportation Engineering, Chongqing Jiaotong University, Chongqing 400016, China
3Chongqing Education College, Chongqing 400067, China

Received 20 May 2013; Accepted 27 June 2013

Academic Editor: Shuyu Sun

Copyright © 2013 Ni Zhihui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Although the phenomenon that strictly meets the constant dimension fractal form in the nature does not exist, fractal theory provides a new way and means for the study of complex natural phenomena. Therefore, we use some variable dimension fractal analysis methods to study river flow discharge. On the basis of the flood flow corresponding to the waterline length, the river of the overall and partial dimensions are calculated and the relationships between the overall and partial dimensions are discussed. The law of the length in section of Chongqing city of Yangtze River is calibrated by using of variable fractal dimension. The results conclude that it does express a second-order accumulated variable-dimensional fractal phenomenon, and the dimension can reflect the degree of the river; the greater dimension, the more the river bend. It has different dimensions at a different location in the same river. In the same river, the larger dimension, the worse flow discharge capacity of the river and the more obvious of the flood will be on the performance.