Copyright © 2012 Weiming Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We present a theoretical analysis of the processes of pattern formation that involves organisms distribution and their interaction of spatially distributed population with self- as well as cross-diffusion in a Holling-Tanner predator-prey model; the sufficient conditions for the Turing instability with zero-flux boundary conditions are obtained; Hopf and Turing bifurcation in a spatial domain is presented, too. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by self- as well as cross-diffusion in the model, and find that the model dynamics exhibits a cross-diffusion controlled formation growth not only to spots, but also to strips, holes, and stripes-spots replication. And the methods and results in the present paper may be useful for the research of the pattern formation in the cross-diffusive model.