Copyright © 2012 José I. Santos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The topology of interactions has been proved very influential in the results of models based on learning and evolutionary game theory. This paper is aimed at investigating the effect of structures ranging from regular ring lattices to random networks, including small-world networks, in a model focused on property distribution norms. The model considers a fixed and finite population of agents who play the Nash bargaining game repeatedly. Our results show that regular networks promote the emergence of the equity norm, while less-structured networks make possible the appearance of fractious regimes. Additionally, our analysis reveals that the speed of adoption can also be affected by the network structure.