Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 862903, 11 pages
http://dx.doi.org/10.1155/2013/862903
Research Article

Altered Knee Joint Mechanics in Simple Compression Associated with Early Cartilage Degeneration

Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4

Received 29 November 2012; Revised 13 December 2012; Accepted 1 January 2013

Academic Editor: Petro Julkunen

Copyright © 2013 Y. Dabiri and L. P. Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The progression of osteoarthritis can be accompanied by depth-dependent changes in the properties of articular cartilage. The objective of the present study was to determine the subsequent alteration in the fluid pressurization in the human knee using a three-dimensional computer model. Only a small compression in the femur-tibia direction was applied to avoid numerical difficulties. The material model for articular cartilages and menisci included fluid, fibrillar and nonfibrillar matrices as distinct constituents. The knee model consisted of distal femur, femoral cartilage, menisci, tibial cartilage, and proximal tibia. Cartilage degeneration was modeled in the high load-bearing region of the medial condyle of the femur with reduced fibrillar and nonfibrillar elastic properties and increased hydraulic permeability. Three case studies were implemented to simulate (1) the onset of cartilage degeneration from the superficial zone, (2) the progression of cartilage degeneration to the middle zone, and (3) the progression of cartilage degeneration to the deep zone. As compared with a normal knee of the same compression, reduced fluid pressurization was observed in the degenerated knee. Furthermore, faster reduction in fluid pressure was observed with the onset of cartilage degeneration in the superficial zone and progression to the middle zone, as compared to progression to the deep zone. On the other hand, cartilage degeneration in any zone would reduce the fluid pressure in all three zones. The shear strains at the cartilage-bone interface were increased when cartilage degeneration was eventually advanced to the deep zone. The present study revealed, at the joint level, altered fluid pressurization and strains with the depth-wise cartilage degeneration. The results also indicated redistribution of stresses within the tissue and relocation of the loading between the tissue matrix and fluid pressure. These results may only be qualitatively interesting due to the small compression considered.