Advances in Numerical Analysis
Volume 2013 (2013), Article ID 315748, 13 pages
http://dx.doi.org/10.1155/2013/315748
Research Article

On a Fast Convergence of the Rational-Trigonometric-Polynomial Interpolation

Institute of Mathematics, National Academy of Sciences, Marshal Baghramian Avenue 24b, 0019 Yerevan, Armenia

Received 11 October 2012; Revised 8 January 2013; Accepted 20 January 2013

Academic Editor: Hassan Safouhi

Copyright © 2013 Arnak Poghosyan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We consider the convergence acceleration of the Krylov-Lanczos interpolation by rational correction functions and investigate convergence of the resultant parametric rational-trigonometric-polynomial interpolation. Exact constants of asymptotic errors are obtained in the regions away from discontinuities, and fast convergence of the rational-trigonometric-polynomial interpolation compared to the Krylov-Lanczos interpolation is observed. Results of numerical experiments confirm theoretical estimates and show how the parameters of the interpolations can be determined in practice.