Copyright © 2012 Hakran Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Image denoising processes often lead to significant loss of fine structures such as edges and textures. This paper studies various innovative mathematical and numerical methods applicable for conventional PDE-based denoising models. The method of diffusion modulation is considered to effectively minimize regions of undesired excessive dissipation. Then we introduce a novel numerical technique for residual-driven constraint parameterization, in order for the resulting algorithm to produce clear images whose corresponding residual is as free of image textures as possible. A linearized Crank-Nicolson alternating direction implicit time-stepping procedure is adopted to simulate the resulting model efficiently. Various examples are presented to show efficiency and reliability of the suggested methods in image denoising.