Copyright © 2011 Yu-Ming Chu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We find the least value λ∈(0,1) and the greatest value p=p(α) such that αH(a,b)+(1−α)L(a,b)>Mp(a,b) for α∈[λ,1) and all a,b>0 with a≠b, where H(a,b), L(a,b), and Mp(a,b) are the harmonic,
logarithmic, and p-th power means of two positive numbers a and b, respectively.